Reasoning for Reinforcement Learning

Silviu Pitis Georgia Institute of Technology

Key Idea: One can explicitly reason to alternative representations of a value function by composing more specific measures (in the form of general value functions) hierarchically, according to known rules of reasoning. This would allow reasoning-enhanced agents to explicitly justify their value judgments and actions, reason to more accurate estimates of value, and apply consistency-based learning.

3-Part Framework for Reasonin

Table 1: Primitive mean

Name	Notation	Recursiv
Time similarity	$\Gamma(s_t,g)$	$\max_{a} \mathbb{E}^{n}$ $s = g, \text{ in }$
Value distance [†]	$\mathtt{vdist}(s_t,g)$	$\mathbb{E}^{\pi(s_t)}[r$
Event distance ^{†*}	$\texttt{xdist}(s_t, x, g)$	$I(s_t, x)$
Event density ^{††*}	$\max(s_t, x)$	$I(s_t, x)$
Value	$V(s_t)$	$\max_a \mathbb{E}^{a}$

* I(s, x) is 1 if s = x and 0 otherwise. To generalize features, define x as a feature index (rather than a st [†] In each case, $\pi(s)$ is greedy with respect to $\mathbb{E}[\Gamma(s_{t+1})]$

^{††} Technically, this should be *maximum* event density

Rules of Reasoning

Learned

Primitives

Table 2: Landmark and f

Algorithm Sketch 1 Recursive reasoning

function REASON_TO(prim, budget) **if** CONFIDENT(**prim**, **budget**) **then** return prim end if $\texttt{estimates} \leftarrow \{\texttt{prim}\}$ for rule in GENERATE(prim, budget) do REASON_TO required primitives Compute estimate using rule and add it to estimates end for **return** RESOLVE(estimates, budget) end function

Metacognitive Controller

silviu.pitis@gmail.com silviupitis.com

19	Implicit knowl → Comparab Measures relat
sures (distances & densities)	
ve definition	
$\Gamma^{a}[\gamma \cdot \Gamma'(s_{t+1}, g)]$, where $\Gamma'(s, g) := \Gamma(s, g)$ unless in which case $\Gamma'(g, g) := 1$. $\Gamma^{a}(s_{t+1}, g)$.	Value function \rightarrow "General V
$+ \mathbb{E}^{\pi(s_t)} [\gamma \cdot \texttt{xdist}'(s_{t+1}, x, g)].$	\rightarrow Can be lea
$+ \max_a \mathbb{E}^a [\gamma \cdot maxsr(s_{t+1}, g)].$	
$[r_t + \gamma \cdot V(s_{t+1})].$ ze in the same way as [1] generalizes the SR to successor ate) and redefine $I(s, x)$ as the xth feature of s. $[+1, g)$] and $f' := f$ unless $s_{t+1} = g$, in which case $f' := 0$. y. The sr in maxsr stands for successor representation [5].	(Sutton et al. 2
	Allow for hiera
actor-based rules of reasoning	
$(s) \geq \operatorname{vdist}(s, \ell) + \Gamma(s, \ell) \cdot V(\ell)$ $(s) \geq \Gamma(s, \ell) \cdot \Gamma(\ell, s)$	Landmarks de
$g) \geq \Gamma(s, \ell) \cdot \Gamma(\ell, g)$ $(s) \leq (V(l) - vdist(l, s)) / \Gamma(l, s)$	\rightarrow Cf. interru
$q) \leq \max(s, x) - \Gamma(s, q) \cdot \max(q, x)$	
$g) \approx \sum_{x_i \in X \subseteq S} \texttt{xdist}(s, x_i, g) \cdot r(x_i)$ $g) = I(s, q) + \Gamma(s, q) \cdot (1/(1 - \Gamma(q, q)))$	Factors decom
$(s) \geq \max(s, s) \cdot \operatorname{vdist}(s, s)$	Composed xdis
	(Dayan 1993)
function CONFIDENT(prim budget):	Requires know
Returns true if agent sufficiently confident in prim given budget.	\rightarrow E.g., varia
function GENERATE(prim, budget): Generates rules (e.g., landmark bounds) that might produce useful representations of prim.	(Sobel 1982, E
function RESOLVE(estimates, budget): Returns single estimate of prim based on the set estimates (not necessarily a member thereof). Optionally invokes consistency-based learning	
	Requires gene includina.e.

erator of applicable reasoning rules, ng, e.g., the relevant landmarks and factor sets \rightarrow Modular; can be rule-based or ML-based

Benefits

Interpretation / Justification

Although primitives are black boxes, their decomposition is explicit Allows for justification (even *ex post*) of actions:

"I took action 2 because it takes me in the direction of landmark A, which is a good place to be; further, the path to A has a reasonable chance of encountering event X, which has been very rewarding."

Reasoning \rightarrow Better Representations

Consistency-based Learning

Extensions

State and Event Abstraction

Autonomous Rule Acquisition

ledge represented by black box functions le to human intuition ted by rules of reasoning

ns of derivative MDPs Value Functions" (GVFs) arned by Horde or with UVFAs 2011, Schaul et al. 2015)

archical decomposition of value function

compose measures temporally ptible options (Sutton et al. 1999)

pose values into sources of rewards st segments \rightarrow successor representation

vledge of primitive distributions nce primitives + rules for composition Engel et al. 2005, Bellemare et al. 2017) Some representations are better than others

 \rightarrow partial supervision (verbal instruction) can be applied to segments

 \rightarrow values of small segments easier to learn than long-run values

 \rightarrow focused exploration leads to familiar landmarks

 \rightarrow shifting rewards change values but not event distances

Multiple representations *should* be consistent

 \rightarrow can optimize for consistency, toward more reliable estimates

 \rightarrow can generalize partial supervision across measures

 \rightarrow E.g., actor-critic methods; TD learning

Ultimate goal: all primitives *implicitly* satisfy the rules of reasoning

 \rightarrow may be unachievable, so that explicit reasoning necessary; but even

if achieved, explicit reasoning still useful for learning, justification

Primitives and rules should ideally be reformulated with respect to:

 \rightarrow sets of states (esp. for landmarks) (Li et al. 2006)

 \rightarrow temporally extended events (esp. for factors)

Would entail a rich set of definition (=), negation (\neg) , inclusion (\in, \subseteq) ,

exclusion (\notin , \notin), preference (\succ) and composition (\cup , \cap) rules

Rules might be acquired through explicit programming, via verbal interaction, or by evolutionary methods

Could agents learn rules of reasoning on their own?

An autonomous process might be inspired by the scientific method:

"First, we guess [a rule]; then we compute the consequences of the *quess; and then we compare those computation results to nature, or* experiment, or experience ... if [the rule] disagrees with experiment, *it's wrong.*" -- Richard Feynman