
Source Traces for Temporal Difference Learning

Silviu Pitis
Georgia Institute of Technology

Atlanta, GA, USA 30332
spitis@gatech.edu

Abstract

This paper motivates and develops source traces for temporal
difference (TD) learning in the tabular setting. Source traces
are like eligibility traces, but model potential histories rather
than immediate ones. This allows TD errors to be propagated
to potential causal states and leads to faster generalization.
Source traces can be thought of as the model-based, backward
view of successor representations (SR), and share many of
the same benefits. This view, however, suggests several new
ideas. First, a TD(λ)-like source learning algorithm is pro-
posed and its convergence is proven. Then, a novel algorithm
for learning the source map (or SR matrix) is developed and
shown to outperform the previous algorithm. Finally, various
approaches to using the source/SR model are explored, and it
is shown that source traces can be effectively combined with
other model-based methods like Dyna and experience replay.

1 Introduction
When we, as humans, first learn that some state of the world
is valuable (or harmful), we adjust our behavior. For in-
stance, suppose we burn our hand on a hot pan. At least
three types of generalization enable useful learning. First,
we generalize to substantially similar causal states: we will
be more careful handling hot pans on Tuesdays, even if the
burn happened on a Monday. Second, we generalize back
through time from direct causes to indirect ones. Rather than
simply stopping at the last second, we may now instinctively
reach for an oven mitt before approaching the pan. Finally,
we generalize not only to actual causes, but also to potential
causes. Our burn may make us less willing to keep our hand
close to a campfire while roasting marshmallows.

Reinforcement learning mirrors human learning in many
respects, including the three modes of generalization just
discussed. The first—generalizing to substantially similar
causes—is a direct result of function approximation (e.g.,
Mnih et al. 2015). The latter two—generalization to indirect
causes and generalization to potential causes—though aided
by function approximation, are driven primarily by temporal
difference (TD) learning (Sutton 1988). TD learning uses a
value function to bootstrap learning, allowing new informa-
tion to flow backward, state-by-state, from effects to causes.

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

The speed of one-step TD methods is limited, however, as
they require many repeat experiences to generalize.

Several families of methods achieve faster generalization
by propagating TD errors several steps per real experience.
Eligibility trace methods keep a short-term memory vector
that accumulates the (decaying) “eligibilities” of recently
visited states, and use it to propagate TD errors to past states
in proportion to their eligibility (Sutton 1988). Experience
replay (ER) (Lin 1992) and Dyna (Sutton 1990) methods
learn from replayed or generated experiences, so that several
value function backups occur per real experience. Unlike el-
igibility traces, ER and Dyna employ a long-term model to
speed up learning with respect to known potential causes.

This paper introduces source traces. Source traces are
like eligibility traces, but model potential histories rather
than immediate ones. This allows for propagation of TD er-
rors to potential causal states and leads to faster learning.
Source traces can be thought of as the model-based, back-
ward view of successor representations (SR) (Dayan 1993).
This backward view suggests several new ideas: a provably-
convergent TD(λ)-like algorithm for learning and the con-
cept of partial source traces and SR (Section 3), a novel al-
gorithm for learning the source map (Section 4), the triple
model learning algorithm (Section 4), and new perspectives
on the source map, which allow, among other things, the use
of source traces to enhance experience replay (Section 5).

For clarity and brevity, and as a building block to future
work, this paper focuses on the tabular MRP-valuation set-
ting. It is likely, however, given existing extensions of SR
(e.g., Barreto et al. 2016), that source traces can be effec-
tively extended to control settings requiring approximation,
which is discussed briefly in the conclusion (Section 6).

2 Ideal Source Traces
We consider an n-state discounted Markov Reward Process
(MRP) with infinite time horizon, formally described as the
tuple (S, p, r, γ), where: S is the state space; p is the transi-
tion function, which takes two states, s, s′ ∈ S, and returns
the probability of transitioning to s′ from s; r is the reward
function, which takes a state, s, and returns a real-valued
reward for that state; and γ ∈ [0, 1) is the discount factor.
If the size of the state space, |S|, is finite, then p can be
described by the |S|×|S| probability matrix P whose ij-th
entry is p(si, sj). Similarly, r can be described by the |S|-

dimensional vector r whose i-th entry is E{r(si)}. We seek
the value of each state, v(s) for s ∈ S, which is equal to the
sum of expected discounted future rewards, starting in state
s. Letting v be the vector whose i-th entry is v(si):

v = r + γPr + γ2P2r . . .
=
(
I + γP + γ2P2 . . .

)
r

= (I− γP)
−1 r

(1)

where the third equality holds because γ < 1 and P is a tran-
sition matrix, so that ‖γP‖ < 1 and the well known matrix
identity applies (see, e.g., Theorem A.1 of Sutton 1988). Al-
ternatively, note that v = r + γPv, from which the result
follows by arithmetic, given that I− γP is invertible.

In practice, v is often solved for iteratively, rather than by
inverting I− γP (see Section 4.1 of Sutton and Barto 1998).
For the moment, however, let us assume that we already have
the source map S = (I− γP)

−1. Then, given any r, we can
solve for v in a single matrix multiplication.

We define the ideal source trace for state sj as the j-
th column of S, [S]·j . If we have already computed v for
some r, and E{r(sj)} changes, we can use the source trace
to precisely propagate the expected reward delta, ∆rj =
E{r′(sj)} − E{r(sj)}, and update v in O(|S|) time:

v′ = v + ∆rj [S]·j . (2)

This “source backup” operation is easily extended to ex-
pected temporal differences. Given some model v0:

v = Sr + v0 − v0
= v0 + S

(
r− S−1v0

)
= v0 + S (r + γPv0 − v0) .

(3)

In words: to arrive at the correct value of v from v0, the
expected temporal difference upon leaving each state sj , [r+
γPv0 − v0]j·, needs to be added to v0 in proportion to the
values of [S]·j , the ideal source trace for sj .

Related Work—SR and LSTD
The source map is well known and goes by several names.
When speaking of undiscounted absorbing Markov chains,
the source map (I−P)−1 is known as the fundamental matrix
(Kemeny and Snell 1976). In the RL setting, it is equivalent
to the matrix of successor representations (Dayan 1993).

Whereas source traces look backward to causes, successor
representations (SR) look forward to effects: the SR of state
si, defined as the i-th row of S, is a |S|-dimensional vector
whose j-th element can be understood as the cumulative dis-
counted expected number of visits to sj when starting in si.
While TD learning with source traces updates v0 directly,
TD learning with SR learns the model r0 and uses it to com-
pute v0(si) as the dot product [S0]i·r0 (models are denoted
with the subscript 0 throughout). The two perspectives are
illustrated in figure 1. Though different in motivation and
interpretation, source traces and successor representations
share the matrix S and are useful for similar reasons.

Much like the backward and forward views of TD(λ) of-
fer different insights (Sutton and Barto 1998), so too do the

backward view (source traces) and the forward view (SR)
here. For instance, the forward view suggests the following
useful characterization: we can think of Sij as the solution
v(si) of a derivative MRP with the same dynamics as the
underlying MRP, but with zero reward everywhere except
state sj , where the reward is 1. This suggests that source
traces may be found by TD learning as the solutions to a set
of derivative MRPs (one for each state). This algorithm was
proposed by Dayan 1993. By contrast, the backward view
prompts an alternative algorithm based on TD(λ) that offers
a faster initial learning curve at the price of increased vari-
ance. We combine the two algorithms in Section 4 to get
the best of both worlds. This shift in perspective produces
several other novel ideas, which we explore below.

Source learning is also related to Least-Squares TD
(LSTD) methods (Bradtke and Barto 1996). In the tabular
case, LSTD models S−1 (i.e., I − γP) and r (or scalar mul-
tiples thereof), and computes v0 as (S−10)−1r0. Incremen-
tal LSTD (iLSTD) (Geramifard, Bowling, and Sutton 2006)
is similar, but learns v0 incrementally, thus avoiding matrix
inversion. Finally, recursive LSTD (RLS TD) (Bradtke and
Barto 1996) computes v0 as does LSTD, but does so by re-
cursive least squares instead of matrix inversion. Of these al-
gorithms, RLS TD—despite being an algorithmic trick—is
closest in spirit to source learning; in the tabular case, equa-
tion 15 of Bradtke and Barto and equation 4 (below) have
comparable structure. However, RLS TD maintains its es-
timate of v precisely using O(|S|2) time per step, whereas
the TD Source algorithm presented learns S0 and v0 using
O(|S|) time per step. As iLSTD has the same time com-
plexity as source learning in the tabular case, we compare
them empirically in Section 4.

3 Convergence
Equation 3 shows that a synchronous source backup of all
expected TD errors converges after a single iteration. But
what about in the reinforcement learning setting, where re-
wards and transitions are sampled asynchronously? And
what if our model of S is only approximate?

Unlike the Q-learning backup operator, the asynchronous
source backup operator is not generally a contraction in
any weighted maximum norm of the value space, even with
known S. As an example, consider the two state MRP de-
fined by r = [0, 0]T , P = [[0.5, 0.5], [0.5, 0.5]], and γ = 0.5,
so that S = [[1.5, 0.5], [0.5, 1.5]]. The optimal v is clearly
[0, 0]T , but starting at v0 = [a,−a]T , the asynchronous
backup from the first state (state i) results in a TD error
of −a, so that v1 = v0 + [S]·i

(
[r]i + γ[P]T·iv0 − [v0]i

)
=

[a,−a]T − a[1.5, 0.5]T = [−0.5a,−1.5a]T . It is easy to see
that the value of state j has been pushed away from its opti-
mal value by 0.5a: |[v1−v]j |> |[v0−v]j |. By symmetry, the
same expansion in v(si) occurs for the asynchronous backup
from state j. Since a is arbitrary, the conclusion follows.

Nevertheless, by working in reward space, instead of
value space, proof of convergence is reduced to a straight-
forward application of the general convergence theorem of
Jaakkola, Jordan, and Singh 1994. Notably, convergence is
guaranteed even with sufficiently approximated S.

Figure 1: SR value computation (left) vs source update (right). When using the SR, one computes v0(si) (as [S0]i·r0) by looking
forward to the (pseudo) reward values of its successors, which are learned according to equation 6 or equation 12. With source
traces, one updates v0 directly by distributing the (pseudo) reward delta at state sj backward to its sources in proportion to
[S0]·j (equation 4). Given a fixed source map, it follows from the derivation of equation 6 that using the SR with equation 6
and source learning with equation 4 are equivalent. The difference that arises when the source map changes during learning is
explored in Section 4—Direct Learning vs SR-Reward Decomposition.

Theorem. The sampled, asynchronous source learning algo-
rithm given by:

vn+1 = vn + αn[S0]·〈n〉

(
r(s〈n〉) + γvn(s〈n+1〉)− vn(s〈n〉)

)
(4)

where subscript 〈n〉 denotes the index corresponding to the
state at time n and S0 is an approximation of S, converges to
the true v with probability 1 if:
(a) the state space is finite,
(b) ∀ state indices x,

∑
〈n〉=x

αn =∞ and
∑
〈n〉=x

α2
n <∞,

(c) Var{r(si)} is bounded for all i, and

(d) ‖(I− S−1S0)‖ ≤ γ.
Proof. Let dn and αn be |S|-dimensional vectors, where
the i-th slot of dn corresponds to a sampled TD error start-
ing in state si, r(si) + γvn(snext(i)) − vn(si) (all samples
but the one corresponding to s〈n〉 are hypothetical), and αn
is zero everywhere except in the position corresponding to
s〈n〉, where it is αn. Then, we can rewrite equation 4 as:

vn+1 = vn + S0(αn � dn) (5)
where � is the element-wise product.

Since ‖(I − S−1S0)‖ ≤ γ < 1, the matrix identity used
in equation 1 above implies that S−1S0 is invertible, so that
S0 is invertible. Letting rn = S−10 vn and left-multiplying
both sides of (5) by S−10 we obtain the following equivalent
update in (pseudo) reward space:

rn+1 = rn + αn � dn. (6)
Subtracting S−10 Sr from both sides and rearranging, we ob-
tain the iterative process {∆n}:

∆n+1 = (1−αn)�∆n + αn � Fn (7)
where ∆n = rn − S−10 Sr and Fn = dn + ∆n. To this pro-
cess, we apply Theorem 1 of Jaakkola, Jordan, and Singh
1994. Conditions (1) and (2) of Jaakkola, Jordan, and Singh
are satisfied by the assumptions above. Condition (3) is sat-
isfied because:

‖E{Fn}‖ = ‖r− S−1S0rn + ∆n‖
= ‖(I− S−1S0)∆n‖
≤ γ‖∆n‖.

(8)

Condition (4) is satisfied because [Fn]k depends at most lin-
early on [rn]k and Var{r(sk)} is bounded by assumption.
Thus, Theorem 1 of Jaakkola, Jordan, and Singh applies,
{∆n} converges to 0, and so too does {vn − v}.

Partial Source Traces and Speed of Convergence
The theorem admits a variety of approximate models, so
long as ‖(I−S−1S0)‖ ≤ γ. One such family is that of n-step
source traces (cf. the n-step methods of Sutton and Barto
1998), derived from the source maps Sn =

∑n−1
k=0(γP)k for

n ≥ 1. Using S1 = I corresponds to TD(0), so that n > 1 in-
terpolates between TD(0) and full source learning. Another
way to interpolate between TD(0) and full source learning is
to introduce a parameter λ ∈ [0, 1] (cf. λ in TD(λ)) and use
λ source traces, derived from Sλ =

∑∞
k=0(γλP)k.

We may combine Sn and Sλ to form:

Sλn =

n−1∑
k=0

(γλP)k. (9)

This gives us the more general family of partial source
traces, for which convergence holds at all λ and n. The case
n = 1 is easy to verify. For n > 1, we have:

‖I− S−1Sλn‖ = ‖I− (I− γP)
n∑
k=1

(γλP)k−1‖

= ‖(1− λ)γP
n−2∑
k=0

(λγP)k + λn−1γnPn‖

≤ γ

[
(1− λ)

n−2∑
k=0

(λγ)k + (λγ)n−1

]

= γ

[
(1− λγ)

n−2∑
k=0

(λγ)k + (λγ − λ)
n−2∑
k=0

(λγ)k + (λγ)n−1

]

= γ

[
1− λ(1− γ)

n−2∑
k=0

(λγ)k
]
< γ

(10)

where the first inequality holds by a combination of the tri-
angle inequality, the identity ‖aA‖ ≤ |a|‖A‖, and the fact
that all terms are positive. The bracketed quantity on the fi-
nal line is in [0, 1] and strictly decreasing in both n and λ,
which suggests that the speed of convergence increases as
we move from TD(0) (either n = 1 or λ = 0) to full source
traces (n =∞ and λ = 1).

Experiments in two environments confirm this, with an
important caveat. The first environment is a Random MRP
with 100 states, 5 random transitions per state with transi-
tion probabilities sampled from U(0, 1) and then normalized

Figure 2: Convergence in 3D Gridworld using known partial and full source traces for various learning rate schedules.

(transitions are re-sampled if the resulting P is not invert-
ible), a random reward for each state sampled fromN (0, 1),
and γ = 0.9. The second is a 1000-state 3D Gridworld with
wraparound: states are arranged in a 10×10×10 3D grid,
with state transitions between adjacent states (6 per state,
including edge states, which wraparound). Transition prob-
abilities are sampled from U(0, 1) and then normalized. 50
random states are assigned a random reward sampled from
N (0, 1) and γ is set to 0.95.

Unless otherwise noted, similar results held in both envi-
ronments, here and throughout. All experiments, unless oth-
erwise noted, reflect average results on 30 Random MRP or
3D Gridworld environments. The same set of randomly gen-
erated environments was used when comparing algorithms.

Figure 2 (left), which reflects the 3D Gridworld, plots
learning curves after 100,000 steps for the source learning
algorithm given by equation 4 for S1 (TD(0)) through S4

and S. A similar pattern appears for Sλ with increasing λ. In
each case, v0 was initialized to 0, and ‖vn−v‖was averaged
across the MRPs (v was computed by matrix inversion).

The curves in figure 2 (left) are not representative of
all learning rates. Figure 2 (center) shows the final error
achieved by TD(0), TD(λ) at the best λ (tested in 0.1 incre-
ments), S4 and S at various fixed α. Although the advantage
of full source traces is clear, both TD(λ) and partial source
learning do better at higher αs. In the Random MRP envi-
ronment (not shown), partial traces provide the best results
after only 50,000 steps and experiments suggest that TD(0)
eventually overtakes full source learning at all fixed α.

This highlights a weakness of using source traces: they
amplify the per-step transition variance by propagating it
multiple steps. We propose two strategies for managing this.
The first is to use a forward model, which we explore in the
“triple model learning” algorithm of Section 4. The second
is to anneal the learning rate. For consistent comparison with
iLSTD in Section 4, we tested the following set of annealing
schedules, adapted from Geramifard et al. 2007:

αn = α0(N0 + 1)/(N0 + n1.1) (11)

for α ∈ {5e-1, 2e-1, 1e-1, 5e-2, 2e-2, 1e-2, 5e-3} and N0 ∈
{0, 1e2, 1e4, 1e6}. Figure 2 (right) plots the best results for

TD(0), TD(λ) at the best λ, S4 and S when annealing the
learning rate, which improved both the convergence speed
and final results for all methods.

Relating the Convergence Results to SR
It is tempting to interpret the convergence theorem in terms
of SR by noting that S0 maps to the SR of a discrete state
space (S0 ⇔ Φ), so that the pseudo-reward space of equa-
tion 6 maps to the weight space when using the SR with
linear value function approximation (rn ⇔ θn). NB, how-
ever, that equation 6 updates only a single element of rn,
whereas semi-gradient TD(0) over θ, which was the rule
used in Dayan 1993 and which we term pseudo-reward de-
scent, updates (potentially) all elements of θn with the rule:

θn+1 = θn + αnδnφ(s〈n〉) (12)

where δn = [dn]〈n〉 is the temporal difference at step n and
φ(s〈n〉) is the SR of s〈n〉. Although the convergence of (12)
does not follow from our theorem, it is guaranteed, under
slightly different conditions, by the theorem of Tsitsiklis and
Van Roy 1997. A notable difference is that the theorem of
Tsitsiklis and Van Roy requires updates to be made accord-
ing to the invariant distribution of the MRP. We compare the
performance of these two update rules in Section 4.

Setting aside the above differences, we note that Sλn may
be used to define partial successor representations (i.e., SR
with n-step or decaying lookahead) and conjecture that the
speed of pseudo-reward descent will increase with n and
λ, as it did for source learning. This idea can be related
to the work of Gehring 2015, which shows that using low-
rank approximations of S can obtain good results. Note that
Gehring’s low-rank approximations are quite different from
the invertible approximations presented here and that the
two methods for approximation might be combined.

4 Learning and Using the Source Map
Source traces are not useful without a practical method for
computing them. In this section we draw inspiration from
TD(λ) to show that the source model can be learned. While

our convergence theorem does not formally apply to this sce-
nario (since S0 is changing), we conjecture that convergence
will occur if the changes to S0 are sufficiently “small”.

The Link Between Source and Eligibility Traces
The TD(λ) algorithm (Sutton 1988), defined by the update:

vn+1 = vn + αnen
(
r(s〈n〉) + γvn(s〈n+1〉)− vn(s〈n〉)

)
(13)

propagates the TD error of each experience according to the
eligibility trace at time n, en, defined recursively as:

en = [I]·〈n〉 + γλen−1 (14)

where subscript 〈n〉 denotes the index corresponding to s〈n〉.
It notable that, but for replacing the current eligibility

trace with the source trace for the current state, the asyn-
chronous source learning update (equation 4) is identical to
the TD(λ) update (equation 13). This suggests a link be-
tween source traces and eligibility traces.

Indeed, it is almost correct to suppose that the average
eligibility trace given that the current state is sj is the source
trace for sj . But recall from equation 1 that S = I + γP +

γ2P2 · · · = I + γPS, so that the source trace for sj is:

[S]·j = [I]·j + γ
∑
i

p(si, sj)[S]·i (15)

In contrast, averaging the eligibility traces for state sj would
reverse the roles of sj and si; letting ej represent the average
eligibility trace in state sj , it is easy to see that:

ej = E{[I]·j + γλei}

= [I]·j + γλ
∑
i

P (si|sj)ei. (16)

Importance sampling at each step of the accumulation cor-
rects for this and turns what would otherwise be the average
eligibility trace into an estimator of the source trace. It is
reflected in the algorithm below (line 12).

The Tabular TD Source Algorithm
The TD Source algorithm is similar to TD(λ), except that it
uses the observed history to update the model S0 rather than
to directly distribute TD errors. This adds extra computation
per step, and requires storing an |S|×|S| matrix in memory.
Line 12 of the algorithm corresponds to equation 15 above.
β is the learning rate used in the stochastic approximation
of S on line 13, and may be fixed or annealed according to
some schedule. Lines 14 and 15 are commented out and are
not part of the TD Source algorithm (see next subsection).

The λ parameter is included should partial source traces
be more desirable than full ones (e.g., because they prop-
agate less variance, or because they are easier to approxi-
mate). One might also consider annealing λ to 1 in order to
minimize the effect of inaccuracies during learning whilst
still obtaining a full source model, which we investigate
briefly in the next subsection.

Algorithm 1 Tabular TD learning with source traces
1: procedure TD SOURCE[-SR](episodes, γ, λ, α, β)
2: v← 0
3: S← I (|S|×|S| identity matrix)
4: c← 0 (counts vector)
5: for episode in 1 .. n do
6: j ← index of initial state
7: c(sj)← c(sj) + 1
8: [S]·j ← (1− β)[S]·j + β[I]·j
9: for pair (si, sj) and reward r in episode do

10: v← v + α[S]·i(r + γvj − vi)
11: c(sj)← c(sj) + 1

12: e← [I]·j + γλ
c(sj)
c(si)

[S]·i
13: [S]·j ← (1− β)[S]·j + βe

/*
14: e← [I]i· + γλ[S]j· . TD SR
15: [S]i· ← (1− β)[S]i· + βe . TD SR

*/
16: return v, S, c

TD Source vs Dayan’s Algorithm (“TD SR”)
As noted in Section 2, the source map is equivalent to the
matrix of successor representations, for which there is an
existing learning algorithm due to Dayan 1993 (when com-
bined with equation 4, “TD SR”). Whereas TD Source learns
the source map using the column-wise recurrence of equa-
tion 15, TD SR uses the row-wise recurrence:

[S]i· = [I]i· + γ
∑
j

p(si, sj)[S]j·. (17)

TD SR uses lines 14 and 15 of the algorithm in place of
lines 12 and 13. And since it does not require importance
sampling, lines 4, 6, 7, 8 and 11 can be removed.

As importance sampling often increases variance and
slows learning, we might expect TD SR to outperform TD
Source. However, the column-wise algorithm has one major
advantage: it immediately puts to use the most recent in-
formation. For this reason, we should expect TD Source to
outperform TD SR algorithm at the start of learning.

Experiment confirms this hypothesis. Figure 3 tracks the
quality of the approximation over the first 50,000 steps of
the Random MRP environment. Four different algorithms
were run at various minimum learning rates. The learning
curves at the best learning rate (in terms of final error) are
shown. For all algorithms, α was annealed to the minimum,
on a per-state basis according to the harmonic series, as this
performed better in all cases than using fixed α. Error was
computed as

√∑
([S0 − S]ij)2.

The results suggest that we might improve upon TD
Source by either (1) finding a better method for anneal-
ing α in response to large importance sampling ratios, or
(2) switching to TD SR after an initial training period (nei-
ther shown). Alternatively, we might combine TD Source
and TD SR and update both [S]·j and [S]i· at each step by
using lines 12-15 simultaneously (“TD Source-SR”). This
outperforms either algorithm individually by a sizable mar-

Figure 3: TD Source vs TD SR on Random MRPs

gin. To check that this is not simply coincidence result-
ing from a higher effective learning rate, we tested several
other learning rate schedules for both TD Source and TD
SR individually—none were as effective as TD Source-SR.

Finally, we tested the proposition in the previous subsec-
tion that annealing λ to 1 might allow for better approxima-
tion of S. Starting at λ = 0.5, λ was annealed linearly to 1
over the first 25,000 steps. This approach failed.

In the 3D Gridworld environment (not shown), similar re-
lationships held after 200,000 steps, although the impact of
importance sampling was not as great (due to the two-way
local structure) and TD SR did not overtake TD Source. TD
Source-SR once again performed best.

Direct Learning vs SR-Reward Decomposition
In Section 3 we identified three update rules: source learn-
ing (equation 4), the equivalent update in pseudo-reward
space (equation 6), and pseudo-reward descent (equation
12). When S0 changes during learning, equations 4 and 6
lead to slightly different results, since the former accumu-
lates v0 and is less sensitive to changes in S0. The three
rules thus define distinct algorithms, which we term direct
methods. We call the algorithm corresponding to equation 6
White’s algorithm, as it was first proposed by White 1996
(§6.2.1, with λ = 0).

There exists a fourth algorithm. Rather than learn v di-
rectly, one may decompose learning into two independent
problems: learning S0 and learning r0. Then v ≈ S0 · r0.
This LSTD-like approach is taken by Kulkarni et al. 2016.
We refer to it as SR-reward decomposition.

Though White 1996 proposed both White’s algorithm and
SR-reward decomposition, a comparison of direct learning
and decomposition has been lacking. Which is better?

On one hand, White noted that decomposition “will be
out of sync until learning is complete” and “as a result, the
estimate [of v] may be quite poor.” One may formalize this
statement by letting E = S0 − S, ε = r0 − r, and putting:

v0 − v = [S + E][r + ε]− Sr
= Er + Sε + Eε. (18)

Then note that the errors compound in the final term.

On the other hand, r may be easy to learn, so that the latter
two terms go to zero and only the error introduced by Er is
left. But if E does not go to zero, as in the case of learning
a partial source map, then the decomposition approach will
not converge to the correct v.

Since direct methods are forgiving of inaccurate S0, we
may hypothesize that their performance will improve rela-
tive to decomposition as the source map becomes harder to
learn. We tested this in the 3D Gridworld environment, and
also took the opportunity to compare the three direct meth-
ods (no parallel experiments were done on Random MRPs).

To modulate the difficulty of learning S, we varied the γ
parameter. This increases the following bound on ‖S‖:

‖S‖= ‖I + γP + γ2P2 . . . ‖≤ 1/(1− γ). (19)

Intuitively, larger γ means that rewards are propagating back
further, which means larger S and more room for error E .

Figure 4 plots ‖vn − v‖ over the first 200,000 steps in 3D
Gridworld at two γ values for the four algorithms discussed,
each at their best tested fixed α, with higher error lines cor-
responding to higher γ. For each algorithm, the model of S
was learned in the style of TD Source-SR, as described in the
previous subsection, so that only the method for computing
and updating v was varied.

Figure 4: Source learning vs SR-reward decomposition vs
pseudo-reward descent (higher lines corresp. to higher γ)

The results show that decomposition results in faster ini-
tial learning in all cases and maintains its advantage for
longer the smaller γ is. As hypothesized, however, it is over-
taken by direct methods as learning progresses.

Triple Model Learning
The results of the previous subsection suggest the following
hybrid strategy: use decomposition at the start of learning
and then switch to a direct method. While not unreasonable,
it is unclear how to design a switching criterion for such an
approach. Instead, we propose the following alternative hy-
brid, which might be viewed as an instance of Dyna: in ad-
dition to learning the backward source model and the reward
model, learn a forward transition model; then propagate ex-
pected temporal differences rather than sampled ones. This
entails the following update:

vn+1 = vn + [S0]·〈n〉

(
[r0]〈n〉 + γ([P0]〈n〉·)

T vn − vn(s〈n〉)
)

where P0 models the transition matrix P.
This update uses three separate models and takes O(|S|)

time per step. Learning P0 is straightforward in the tabu-
lar setting and, like learning S0 and r0, takes O(|S|) time
per step. We refer to the resulting algorithm as triple model
learning. Note that since experiences are used solely for
learning the models, and learning v0 is strictly model-based,
updates may be strategically ordered a la prioritized sweep-
ing (Moore and Atkeson 1993). Note further that since P0

models p(si, sj), it may be used in place of experience when
learning S0, which should reduce variance and eliminate the
need for importance sampling.

TD Source-SR vs Triple Model Learning vs iLSTD

In this section we compare TD Source-SR, triple model
learning and iLSTD in the 3D Gridworld environment, using
the same setup and set of annealing schedules (plus fixed αs)
used in figure 2 (right). iLSTD was chosen for comparison
because, like TD Source-SR and triple model learning, it is a
model-based method that runs in O(|S|) time per step in the
tabular setting. We ran both the random and greedy variants
of iLSTD, with m = 1 dimensions updated per iteration, as
in Geramifard et al. 2007.1

The results are shown in figure 5, which is directly com-
parable to figure 2 (right). All four model-based approaches
ended up in approximately the same place. Surprisingly, they
performed comparably to source learning with ideal source
traces, which tells us that a precisely accurate source map
is not so important. Triple model learning had the fastest
learning curve by a respectable margin, and both it and TD
Source-SR learned faster than the two iLSTD algorithms
(but note that only the best final results are shown). By re-
ducing the variance of updates, triple model learning outper-
forms even ideal source traces (final error of 1.45 vs 1.61).

Figure 5: Performance in 3D Gridworld using best tested
annealing schedule. Compare to figure 2 (right).

1We note that iLSTD, primarily its greedy variant, “blew up”
for several annealing schedules. This was the result of accumulat-
ing a large A. In these cases, we used our knowledge of the true v
to terminate learning early.

5 Useful Properties of Source Traces
Setting aside any potential gains in learning speed, there are
at least three properties that make the source model useful.

Time Scale Invariance
Given some continuous process that can be modeled with a
discrete-time MRP, there is a choice of how granular time
steps should be; we may choose to model a time step as one
second or as one tenth of a second. Source traces are invari-
ant to the granularity in the following sense: if the credit
that state si receives for state sj is [S]ij , this value will not
change if the steps between si and sj are defined with larger
or smaller intervals (assuming γ is adjusted appropriately).
As noted by Dayan 1993, the source map “effectively factors
out the entire temporal component of the task.”

Time scale invariance means that source traces capture
something about the underlying process that is independent
of how we structure the state and transition model for that
process. In particular, an agent equipped with a source map
S can use it to answer the following questions about cause
and effect: “What is likely to cause X?” and “What are the
likely effects of Y?” The answers could be used, in turn, for
justification; i.e., as a step toward answering questions like:
“Why did you do X?” or “Why did Y happen?”

We leave further development on this topic to future work.

Reward Invariance
Source traces are independent of the reward model. This
makes them useful for transfer learning, for learning in non-
stationary environments, and for evaluating hypotheticals.

The latter point—evaluating hypotheticals—is central to
general intelligence. As this application is only relevant in
control settings, however, we defer it to future work.

On the former points—transfer learning and learning
in non-stationary environments—source traces provide a
method of quickly adapting to changing reward values. This
was investigated from the lens of SR in the work of Dayan
1993, as well as in the follow-up works of Barreto et al.
2016, Kulkarni et al. 2016, Zhang et al. 2016, and Lehnert,
Tellex, and Littman 2017. The only novelty offered by the
backward-view in this context is the ability to propagate the
impact of a reward change at a single state to the entire value
space in O(|S|) time. This ability may be useful in cases in-
volving communication; for example, if a teacher informs
the agent that they are misjudging the value of state sj , that
information can be used to directly update v0.

Trajectory Independence
Like eligibility traces, source traces distribute TD errors
more than one step, thereby increasing sample efficiency.
But unlike eligibility traces, source traces are independent of
the current trajectory. This means they can be used in cases
where isolated experiences are preferred to trajectories.

In particular, there are at least two reasons why we would
prefer to sample experiences instead of trajectories from an
experience replay or Dyna model. First, random sampling
can alleviate problems caused by correlated data (Mnih et
al. 2015). Second, methods for prioritizing samples improve

Target ‖v0 − v‖
3.0 2.0 1.5

TD(0) 154 465 979
TD(0) w/ ER 58 161 319
TD Source-SR 58 158 335
TD Source-SR w/ ER 41 100 189

Table 1: Thousands of steps to reach target error values in 3D
Gridworld when using experience replay and source traces

the efficiency by sampling experiences out of order (Schaul
et al. 2015; Moore and Atkeson 1993). In these cases, source
traces may be used where eligibility traces are inapplicable.

To demonstrate this benefit, we ran each of TD(0), TD(0)
with ER, TD Source-SR, and TD Source-SR with ER at var-
ious fixed learning rates in the 3D Gridworld environment.
The replay memory had infinite capacity, and was invoked
on every step to replay 3 past steps. For three “target” levels
of error, we computed the number of real steps that it took
for the average error (over the set of 30 3D Gridworlds) to
fall below the target (in each case, at the best tested α). The
results in Table 1 show that switching from one-step backups
to source backups during ER can speed up learning.

6 Conclusion
This paper has developed the theory of source traces in the
context of valuing tabular finite-state MRPs. Our contri-
butions include the proposed source learning algorithm, a
theorem for its convergence, the concept of partial source
traces (and SR), the TD-Source and TD Source-SR algo-
rithms, a comparison of direct methods and decomposition,
the triple model learning algorithm, and a demonstration of
the effectiveness of combining ER and source traces. While
this work serves as a necessary foundational step, in most
practical scenarios, we will be concerned with continuous,
uncountable-state Markov decision processes (MDPs). In
anticipation of future work, we conclude with a brief com-
ment on the challenges posed by these settings.

For purposes of control, we note that S changes as policy
changes. To capture the same benefits in a control setting,
one must either construct a higher order source function,
learn a set of source maps (one for each policy), or rely on
the error bound provided by the convergence theorem and
the (not necessarily true) assumption that minor changes in
policy entail only minor changes in the source map.

For purposes of approximation, note that extending source
traces to propagate TD errors back to features entails the
problem of agglomeration: since features, unlike states, are
not isolated from each other (multiple features appear in the
same state), collecting their historical accumulations into a
single trace will erode the usefulness of its interpretability.
It may therefore be more appropriate to construct a genera-
tive source model that captures a time-invariant distribution
of past states. Such a model would maintain both its inter-
pretability and usefulness for model-based learning.

References
Barreto, A.; Munos, R.; Schaul, T.; and Silver, D. 2016. Succes-
sor features for transfer in reinforcement learning. arXiv preprint
arXiv:1606.05312.
Bradtke, S. J., and Barto, A. G. 1996. Linear least-squares al-
gorithms for temporal difference learning. In Recent Advances in
Reinforcement Learning. Springer. 33–57.
Dayan, P. 1993. Improving generalization for temporal differ-
ence learning: The successor representation. Neural Computation
5(4):613–624.
Gehring, C. 2015. Approximate linear successor representation
(extended abstract). The 2nd Multidisciplinary Conference on Re-
inforcement Learning and Decision Making.
Geramifard, A.; Bowling, M.; Zinkevich, M.; and Sutton, R. S.
2007. iLSTD: Eligibility traces and convergence analysis. In Ad-
vances in Neural Information Processing Systems, 441–448.
Geramifard, A.; Bowling, M.; and Sutton, R. S. 2006. Incremental
least-squares temporal difference learning. In Proceedings of the
21st national conference on Artificial intelligence-Volume 1, 356–
361. AAAI Press.
Jaakkola, T.; Jordan, M. I.; and Singh, S. P. 1994. Convergence of
stochastic iterative dynamic programming algorithms. In Advances
in neural information processing systems, 703–710.
Kemeny, J. G., and Snell, J. L. 1976. Finite markov chains.
Springer-Verlag, second edition.
Kulkarni, T. D.; Saeedi, A.; Gautam, S.; and Gershman, S. J.
2016. Deep successor reinforcement learning. arXiv preprint
arXiv:1606.02396.
Lehnert, L.; Tellex, S.; and Littman, M. L. 2017. Advantages and
limitations of using successor features for transfer in reinforcement
learning. arXiv preprint arXiv:1708.00102.
Lin, L.-H. 1992. Self-improving reactive agents based on re-
inforcement learning, planning and teaching. Machine learning
8(3/4):69–97.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Veness, J.;
Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fidjeland, A. K.;
Ostrovski, G.; et al. 2015. Human-level control through deep rein-
forcement learning. Nature 518(7540):529–533.
Moore, A. W., and Atkeson, C. G. 1993. Prioritized sweeping: Re-
inforcement learning with less data and less time. Machine learn-
ing 13(1):103–130.
Schaul, T.; Quan, J.; Antonoglou, I.; and Silver, D. 2015. Priori-
tized experience replay. arXiv preprint arXiv:1511.05952.
Sutton, R. S., and Barto, A. G. 1998. Reinforcement learning: An
Introduction. The MIT Press, Cambridge.
Sutton, R. S. 1988. Learning to predict by the methods of temporal
differences. Machine learning 3(1):9–44.
Sutton, R. S. 1990. Integrated architectures for learning, planning,
and reacting based on approximating dynamic programming. In
Proceedings of the seventh international conference on machine
learning, 216–224.
Tsitsiklis, J. N., and Van Roy, B. 1997. Analysis of temporal-
diffference learning with function approximation. In Advances in
neural information processing systems, 1075–1081.
White, L. M. 1996. Temporal difference learning: eligibility traces
and the successor representation for actions. Univ. of Toronto.
Zhang, J.; Springenberg, J. T.; Boedecker, J.; and Burgard,
W. 2016. Deep reinforcement learning with successor fea-
tures for navigation across similar environments. arXiv preprint
arXiv:1612.05533.

