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Can all “rational” preference structures be represented using an MDP?

This is an important question, especially as agents become more general purpose,
because it is commonly assumed that arbitrary tasks can be modeled as an MDP.
E.q., Christiano et al. model human preferences as an MDP — does this make sense?

This paper derives a generalization of the MDP reward structure from axioms that

has a state-action dependent “discount” factor. Instead of the standard Bellman,
the generalized MDP ("MDP-I") uses the equation (see Theorem 3):

Q(s,a) = R(s,a) + [(s, a) E[Q(s’ a')].

A motivating example: Walking along a cliff

An agent is to walk in a single direction on the side of a cliff forever. The cliff has three paths: high, middle, and low.

The agent can jump down, but not up. The agent assigns the following utilities to the paths:

The only discounted 3-state MDP with y = 0.9 that matches the utilities of paths ¢-g is:

3.4

0
High Middle Low

But this implies the following utilities (the utilities of paths a and b are reversed!):

Either the original utility assignments were irrational, or the MDP structure used is inadequate!
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Objects of preference

Preferences are taken over (state, policy) tuples, called prospects. Prospects represent the state-action process going
forward, with all uncertainty left unresolved. This is in contrast with preference-based RL (Wirth et al. 2017), which
often uses trajectories, policies, states, or actions as the objects of preference. None of these alternatives satisfy the
basic requirement of asymmetry (Axiom 1)

Strict preference is denoted by > . Lotteries of over the prospect set P are denoted by L(P).

Preferences over prospects are assumed to be independent of the state history (they satisty Markov preference).

Axioms

Axiom 1 (Asymmetry). If p > q, then not q > p.

Axiom 2 (Negative transitivity). Ifnotp > q, and not q > r,
then notp > r.

Axiom 3 (Independence). If o € (0,1] and p > ¢, then
M (p,T) = Ma(q,T).

Axiom 4 (Continuity). Ifp >= q = 7, then 3 o, 8 € (0,1)
such that M, (p,7) = G = Mp(p, 7).

Axiom 5 (Irrelevance of unrealizable actions). If the
stochastic processes generated by following policies 11 and
Q) from initial state s are identical, then the agent is indiffer-
ent between prospects (s,11) and (s, Q).

Axiom 6 (Dynamic consistency). (s, all) > (s,af) if and
only if (T'(s,a),1I) > (T'(s,a),2).

Axiom 7 (Horizon continuity). The sequence {U (s,11,,2)}
converges with limit U (s, 11).

o
Theoretical results
Theorem 1 (Expected utility theorem). The binary relation Theorem 4 (Generalized successor representation). For
>~ defined on the set L('P) satisfies Axioms 1-4 if and only if finite S|, lim, oo (D™ T™)" = 0, so that the matrix
there exists a function U : P — R such that,V p,q € L(P): I-T"T™)" ! =1+ ()t + (I'T)% + ... is invertible.

PG < > p2)U(2) > > q(2)U(2)

Theorem 5. Preferences induced by the discounted additive

value function of an MDP satisfy Axioms 1-7.
where the two sums in the display are over all z € P in the

respective supports of p and q. Moreover, another function
U’ gives this representation if and only if U’ is a positive
affine transformation of U.

Theorem 6 (Existence of optimizing MDP). Given an SDP
with cardinal utility U over prospects, and optimal station-
ary policy ™ with respect to U, for all v € |0,1), there
exists a unique “optimizing MDP” that extends the SDP
with discount factor v and reward function R such that 7*
is optimal with respect to V', and has corresponding optimal

V*=U"and QQ* =U".

Theorem 2. [f there exists an optimal policy 11, there exists
an optimal stationary policy .

Theorem 3 (Bellman relation for SDPs). There exist R : Theorem 7. In the optimizing MDP (for finite |S|) :

SxA—RandT : S x A— RT such that for all s, a, 11,
U(s,all) = R(s,a) + T'(s,a)Ey or(s.q)[U (s, ).

W =u" —I-T"T") "(I-~T") (v —=v")
—v —(I-T"T") €T (v —v").

Implications and future work

The theoretical analysis suggests that the discounted MDP structure may not be sufficient to model general purpose
oreference structures. Future work should investigate this empirically, especially for inverse reinforcement learning
and preference-based reinforcement learning (does adding a state-dependent discount factor improve results?). In
other words, does the state-dependent discount factor allow us to better represent empirical human preferences?




