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Using Modular Abstractions in Reinforcement Learning for Objective Specification and Reasoning

Outline of Proposed Research The field of reinforcement learning (RL) seeks to design agents that
learn to interact with a partially observed environment [34]. Although RL agents have enjoyed significant
success—learning to solve challenging continuous control tasks from scratch [19, 24] and achieving super
human performance on Atari [22] and Go [30, 31]—the current state-of-the-art agents are highly task spe-
cific and do not yet generalize well to unseen environments, goals, or states [10]. If we are to build general
purpose RL agents, I argue that at least two fundamental and closely related questions must be addressed:
(1) what objectives should a “general-purpose” agent optimize and how can they be specified, and (2) how
can we endow agents with the ability to reason about the world at multiple levels of abstraction, using mul-
tiple modalities (especially natural language)? My thesis is that the use of modular, high-level abstractions
over objectives and states is critical to both questions. To explore this, I propose to build upon ideas from
RL [2, 18, 28, 35], planning [12, 27], social choice [3, 6], and causality [23, 33]. Below I outline related
work, followed by four specific angles I would like to pursue in the course of my research.

Background & Related Work The typical RL setup involves an agent acting in a Markov Decision
Process (MDP) to maximize the long-term sum of a scalar reward (a “value function”) [34]. Traditionally,
this reward signal was specified by a human designer and given to the agent explicitly. While this works
in the case of games (e.g., Atari & Go [22, 30]), the limitations of this approach become clear once we
consider more general purpose agents; after all, what reward signal do humans (or societies) optimize?
A pertinent line of work considers agents that can predict, and act to optimize, multiple “general” value
functions (GVFs) [28, 35]. GVFs have been used to improve agent performance [14] and transfer knowl-
edge across tasks [5], as well as for multi-goal RL [2, 24], hierarchical RL [15, 36], and planning [11, 25].
A key view of GVFs is that they represent abstract knowledge about the world [35], a perspective closely
aligned with research on state abstraction [1, 18]. One useful type of GVF, which measures temporal
distance between states and goals, is based on state abstractions: in continuous spaces individual states
(usually) have measure zero, so that the goal must be a state abstraction, or set of success states. GVFs and
state abstractions each provide a discrete summary of a high-dimensional underlying space—reward signals
and states, respectively—and might be used as a foundation for augmenting RL agents with symbolic
reasoning (colloquially known as Good Old-Fashioned AI, or “GOFAI”) [4, 27]. For instance, abstractions
might enable constraint satisfaction algorithms and partial supervision [46], and the design of interpretable
agent interfaces [13]. Though this research direction remains largely unexplored, I believe it is particularly
promising as it may enable humans to communicate objectives to RL agents in abstract terms [9, 21].
Abstractions are also fundamental to the intersections of RL with (1) social choice and (2) causation. For RL
agents to optimize the right objective from a societal perspective, they must correctly model human values.
A foundational idea in social choice is that human preferences can only be practically communicated in
ordinal or discrete terms [29]. Since RL agents model the world in cardinal or continuous terms, they must
be able to do the inverse of abstraction: turn (multiple) abstractions (e.g., votes) into an inference about
underlying “social preference” [51]. In the study of causation, we are almost always interested in causal
relationships between variables—does smoking cause cancer?—which are defined as abstractions over an
underlying probability space [23]. A handful of researchers have applied counterfactual reasoning to RL
[2, 8, 20], but there is still much to explore and few have applied RL to causal discovery [39] .

Hypotheses, Research Objectives, and Methodology (in no particular order)

1. Integrating multiple goal spaces and state abstractions. Humans can accomplish arbitrarily defined
goals, whether expressed by an image or via language, and can translate image goals into language goals
and vice versa. This ability is fundamental to expressing general preferences and solving novel tasks. In our
2019 extended abstract [50] we propose to enable GVF-based, multi-goal RL agents [2, 24, 28] to do the
same by learning a Prototype Goal Encoding (“ProtoGE”) that maps goals (or state abstractions) from one
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space to a more specific “prototype” goal in another space. I hypothesize that if developed, this idea will be
instrumental in designing agents capable of achieving a variety of goals, and reasoning using a variety of
abstractions, irrespective of modality (vision, language, etc.). To this end, I would like to further formalize
our framework in order to develop theoretical performance bounds on the quality of goal translations and to
account for goals with disconnected success states (e.g., “travel to one of four corners”). I would also like
to experiment with a generative ProtoGE map, rather than the current rule-based mechanism. A successful
outcome would be an agent that quickly learns to achieve novel goal specifications by translating them into
its native space (cf. humans translating a second language into their native tongue). This might lead to an
RL agent that can autonomously master an environment, and quickly adapt to commands in any language
(English, Chinese, etc.). It may also help us to design an agent that can integrate multi-modal social cues
from multiple principals (e.g., explicit manual feedback, verbal feedback, or a simple nod).

2. Top-down search with GVFs. Humans have the ability to visualize a set of landmarks on the way to
a destination; we can generate landmarks that are nearby, close to the goal, or in an ad hoc fashion, and we
can hold and compare multiple candidate plans in our head (e.g., alternative driving routes). By contrast,
most modern RL agents are either “model-free” [19, 22] (even hierarchical agents [17, 37]) or use a model
to rollout trajectories forward in time [7] (forward search). In a 2017 workshop paper [46] I proposed to
endow RL agents with the ability to do top-down search, which is closely related to an older idea—DG
learning—proposed by Leslie Kaelbling in 1993 [16]. This approach has been slow to develop as many of
its parts are still subject to active research. But recent work toward better distance models (represented by
GVFs) [28, 49], state abstractions [1] and discrete representations [13] has set the stage for combining RL
with planning [11]. I would like to build on these ideas to develop an agent that can plan top-down, similar
to the way humans do, by dynamically generating landmarks and subgoals, and comparing and combining
multiple proposed plans. Though this will require significant engineering, it also entails several interesting
theoretical questions, which I intend to explore: e.g., (1) is learning and planning with short-horizon goals
provably more efficient and/or accurate than learning long-term goals? (hypothesis: yes), and (2) can we
develop more efficient RL algorithms via good landmark selection? (hypothesis: yes).

3. Unifying causal reasoning and RL. Where do useful abstractions come from? An appealing idea is
to think of the world as a collection of independent causal mechanisms [23]—for instance, the sun rises
regardless of when and where I drink my morning coffee. Then each mechanism can be reasoned about
individually and entails an abstraction over the underlying system: the sun’s movement can be predicted in
isolation, which suggests it exists as a discrete entity, independent of my coffee habits. I would like to inves-
tigate two specific hypotheses at the intersection of causality and RL. First, noting that goal relabeling [2],
an effective technique for multi-goal RL, uses counterfactual reasoning to exploit the independence relation
between the agent’s subjective goal and the environment transitions; I hypothesize that other independences
could be similarly used to relabel data and improve sample efficiency and generalization capabilities. Sec-
ond, as humans naturally intuit causal relations (albeit not always correctly), I hypothesize that so too can
RL agents, if equipped with a carefully designed algorithm for doing so.

4. Integrating ordinal signals for cardinal choice. As suggested in the Background, RL agents will
need a theoretically justified way of translating ordinal feedback from humans into a cardinal understand-
ing of the world. Standard machine learning techniques (e.g., modeling a binary signal with a Bernoulli
distribution) are not immediately applicable here, as feedback signals may come from multiple correlated,
and sometimes adversarial, principals, and are likely not independent and identically distributed. Is there a
normatively justified way of integrating ordinal feedback signals? [26]. My 2019 project [51] is a first step
toward formalizing this problem in a simplistic, one-shot setting. I would like to further pursue this topic in
more complex settings, both theoretically (optimality, complexity, loss bounds, value of diverse feedback)
and empirically (comparison to standard voting rules, perceived trustworthiness to humans).
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