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I’m interested in the normative design of general purpose artificial agency : how should we design AIs that
solve general tasks and contribute positively to society? The first part of this document motivates normative
agency design and summarizes my past work. The second part outlines my current work and related ideas.

I Normative Agency Design and Past Work

Imitating Human Intelligence Is Not Enough. To define intelligence, we often use the human as a
prototype. Animals exhibiting more human capabilities are said to be more intelligent. Similarly, we compare
the task-specific performance of artificial agents (Deep Blue, DQN, AlphaGo, etc.) to human performance.
For value alignment and reward learning, we typically consider the human as the “gold standard” [5,13,17,22].
We find this human-centric approach attractive because we are human—we know how we think and what
makes us intelligent. Or do we? For all our achievements, the inner workings of the brain and our true
motivations remain a mystery, we regularly exhibit undesirable behaviors and thought patterns [18], and our
individual values and beliefs continue to evolve (e.g., just two centuries ago, slavery was commonly accepted).
While we should aspire to create agents that possess human capabilities, any approach to intelligence that is
modeled too closely after the “empirical human” will suffer from the same shortcomings. To the extent we
have irrational or anti-social humans, such approach will result in irrational or anti-social AIs (e.g., Tay [44]).

Normative Intelligence. To separate our study of agency from the empirical human, we can describe
the qualities we seek in an “ideal agent”, and design our agents so as to satisfy them. I call this normative
agency design because it specifies how agents should think and behave. I now describe two styles of
normative design—axiomatic and capability/constraint—together with a bullet summarizing my past work.

The Axiomatic Approach. The axiomatic approach to normative design starts with a set of basic,
universally appealing axioms and uses them to derive powerful conclusions about agents that satisfy the
axioms. The axioms can be understood as defining “rationality” and are usually simple, intuitive statements.
For instance, we may think an ideal agent should exhibit transitive preference: if the agent prefers A to B,
and B to C, it should prefer A to C. This transitivity axiom is one of four VNM axioms that can be used
to conclude that “rational” agents are expected utility maximizers [23,42], which is fundamental to our use
of value functions in reinforcement learning (RL) [37]. For an agent with multiple principals (e.g., any pro-
social agent), we should further consider axioms from social choice [4]. For instance, the Pareto axiom—if
all principals prefer A to B, so too should the agent—is used in both Arrow’s Impossibility Theorem [3] and
Harsanyi’s aggregation theorem [15]. These two results provide strong normative guidance on agent design:
if we accept their axioms, our agents should have a way to compare the utilities of their human principals.

• The work I am most proud of is my work on discounting [28], in which I show that agents satisfying a
Dynamic Consistency axiom [19,21], the VNM axioms and a few other axioms must satisfy a generalized
Bellman relation with state-action dependent discounting. This provides a normative justification for
White’s unifying RL task formalism [43], and allows agents to represent a wider range of objectives than
the standard Bellman relation, while still precluding inconsistencies. If we accept my axiomatization, it
suggests there are human preferences that fixed discount agents cannot represent (i.e., reward learning is
not enough—we must also learn time preference). I plan to empirically verify this in future work.

The Capability/Constraint Approach. The capability/constraint approach to normative design asks
“what capabilities should agents possess?” and similarly, “what constraints should we place on agents?”,
and proceeds to construct agents with these capabilities and constraints. Work in this category has a more
empirical flavor than axiomatic work, because capabilities are often defined in less formal terms, and much like
written law, some interpretation is required. Nevertheless, by cataloging desired capabilities and constraints,
we can start to form a more clear picture of the ideal agent. For instance, the fact that a general purpose
agent must explore, communicate and adapt through time, has motivated my focus on the RL setting [40].

• I take this approach in my works on Source Traces (grants agents a model of potential causes) [27],
Maximum Entropy Gain Exploration (MEGA) (grants agents the ability to systematically explore an
environment) [31], Prototype Goal Encodings (ProtoGE) (grants agents the ability to pursue goals from
multiple goal spaces) [29], and Counterfactual Data Augmentation (CoDA) (grants agents the ability
to generate counterfactuals by mixing independent subsamples of observed transitions) [32] and Neural
Metrics (architecturally constrains an agent’s value function to satisfy the triangle inequality) [30]. While
I like this research and think it is valuable, I find it somewhat less satisfying than the axiomatic approach.
The solutions are mathematically motivated, but they exemplify only one, not necessarily best solution.

1



II Research Topics I’m Interested In (November 2020)

One of my long run goals is to obtain a clear normative account of intelligence before we develop a general
purpose, potentially superhuman, AI. My immediate interests, reward aggregation and flexible multi-goal
specification, primarily relate to principled abstraction—a critical piece of the larger puzzle. As it is likely
our agents, regardless of compute, will possess but bounded rationality [39], normative design demands
principled approximation. Yet perhaps the most common modern approach is to throw a neural network at
the problem and approximate everything—entire observations, entire states, even entire trajectories [6,12,14].
This produces representations and behaviors that are entangled in subtle, often obscure ways with the data
distribution, optimization process, and hyperparameters [1, 9, 16]. Even more so than the empirical human,
the resulting agents are black boxes with unclear motivations, possibly inconsistent beliefs [20], and poor
generalizability [7]. I don’t yet have a clear picture of what the correct approach is, but I believe it should
involve some form of compositional, context-conditioned reasoning over basic abstractions. This motivates
my interest in multi-goal RL [26, 29, 30, 31, 32, 34, 38], which allows agents to plan over a range of goals,
typically defined as abstractions (sets) over the state space. Below, I outline some of my current ideas.

Decomposing Individual Intelligence. We typically characterize individual choice as the result of a
monolithic set of preferences. Consider, however, the corporation or national government. We can treat
them as individual agents, but we can also view their actions as the result of a negotiation between several
human principals (I used both lenses to analyze corporate and national policy from a law and economics
angle in law school [24, 25]). This perspective also applies to individual action, as a negotiation between
competing objectives [36], and so we can apply the axioms and tools of social choice to analyze individual
choice. At present, I’m using this approach to work toward an universal basis for reward functions. My
current theoretical work shows that under the assumptions of my work on discounting [28] (including the
VNM and Dynamic Consistency axioms), the Pareto axiom, and the presence of varying time preference [8], it
is impossible to consistently combine reward functions without forgoing the Markov property (cf. [45]). This
suggests that to faithfully represent compound objectives, we must treat rewards as non-Markovian [41]. Can
this analysis be applied to design agents that can successfully navigate conflicting objectives and principals?

Aggregating Imperfect Principals. The prior paragraph considers an agent with multiple fully observed,
cardinal principals. But how should an agent integrate noisy feedback signals? [35]. My recent project on
Objective Social Choice [33] formalizes the noisy aggregation problem in the bandits setting by framing
voting as an estimation problem. We found that auxiliary information can be used to improve outcomes and
concluded that we should not assume Anonymity—which treats all principals equally—as an axiom. Can
this be extended to the sequential setting, where current approaches (e.g., [5]) are Anonymous? Relatedly,
what should we do when signals are a mix of ordinal and cardinal values?

Axiomatizing Abstraction. A normative approach to abstraction could be of tremendous value. For
instance, my labmate and I recently designed a neural network architecture that is guaranteed to respect
the triangle inequality [30]. The intent was to use these networks to represent asymmetric metrics in multi-
goal RL, thereby providing our agents with consistency guarantees on their value estimates. We discovered,
however, that the underlying idea—representing distances in RL using an asymmetric metric—can be applied
naively only in the non-abstracted case, where goals are completely specified states. In the abstracted case,
the triangle inequality may fail and we need a more nuanced approach, which we are now working toward.
If we had normative guidance, e.g., on how to represent and/or compute distances between abstractions, it
might simplify our problem significantly. Can we come up with an axiomatic approach to abstraction?

Enabling Dynamic Abstraction. One of our most remarkable human capabilities is that we can view
the same underlying state from a range of diverse perspectives. In a legal trial, for instance, the lawyers for
each side attempt to persuade the judge and jury that their characterization of the facts is the “better” one.
I believe this ability to reason in terms of multiple abstractions is one of the most important capabilities for
an agent to possess: it is necessary for empathy, compromise, and communication with others whose basic
assumptions differ. As the right low-dimensional abstraction can also greatly simplify a variety of tasks,
including exploration [30, 31], the ability to represent abstractions dynamically [10, 11], as well as translate
between abstractions [29], would be invaluable. How can we grant our agents the ability to reason about the
world from multiple competing perspectives? And what makes a good abstraction?

Constraining Intent. The usual “global reward” approach to RL is intent-free, or at best, intent
implicit. An intent-free agent that does something wrong is difficult to debug: did it fail because the goal
was misspecified or because the learning algorithm failed? Multi-goal RL grants agents explicit intent, but
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this comes with risks: a “curious” block stacking agent seeks to drop the block in novel ways [31]. Borrowing
an idea from criminal law, we may constrain bad intent (mens rea); but how exactly should this be done?

Procedural normativity. When faced with hard substantive problems, we might borrow another idea
from the legal system: provide the necessary procedure (e.g., due process) so that ultimate outcomes are
deemed fair, even if they are considered “wrong” by some (or many!). We can take a normative approach
to this and impose axiomatic requirements on our procedure. For instance, we use this approach to analyze
ordinal voting rules; even though no rule can satisfy our normative desiderata (recall Arrow’s Theorem [3]), we
can nevertheless require rules to satisfy fairness axioms like Anonymity, Condorcet Consistency and Strategy-
Proofness. When allowing humans to shape the objectives of AIs, are there any procedural properties—
separate from substantive rationality constraints—that we can impose to prevent negative externalities?

Stacking Six Blocks From Scratch. A nice benchmark problem for sparse-reward multi-goal rein-
forcement learning is block stacking. Stacking 2 blocks from scratch is too hard for a randomly exploring
Hindsight Experience Replay agent [2]. Our MEGA agent [31] is the first to solve this task from scratch,
without a hand-crafted curriculum or human demonstrations. In fact, by adding a safety constraint (see
“Constraining Intent” above), we can even stack 3 blocks from scratch. But I have not yet been successful in
stacking 6 blocks. Is this possible by combining techniques like MEGA, CoDA [32] and safety constraints?
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