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I’m interested in the normative design of general purpose agents: how should we design agents that solve
general tasks and contribute positively to society? What objectives should general purpose agents pursue?

1 Imitating Human Intelligence Is Not Enough
To define intelligence, we often use humans as a prototype. Animals exhibiting more human capabilities are
said to be more intelligent. Similarly, we compare the task-specific performance of artificial agents (Deep
Blue, AlphaGo, GPT, etc.) to human performance. For value alignment and reward learning (e.g., RLHF
applied to LLMs), we appeal to human examples and preferences [10,13,18,19]. We find this human-centric
approach attractive because we are human—we understand ourselves and know what makes us intelligent.
Or do we? For all our achievements, the brain’s inner workings and our true motivations remain a mystery,
we regularly exhibit undesirable behaviors and thought patterns [14], and our individual values and beliefs
continue to rapidly evolve (e.g., just two centuries ago, slavery was commonly accepted). While we should
aspire to create agents that possess human capabilities, any approach to intelligence that is modeled too
closely after the “empirical human” will suffer from the same shortcomings. To the extent we have irrational
or anti-social humans, such approach will result in irrational or anti-social AIs (e.g., Tay [33], WormGPT).

2 Normative Intelligence
To separate our study of agency from the empirical human, we can imagine that there is some underlying
truth that humanity is in the process of discovering (cf. [5]). Due to our bounded rationality and limited
experiences, empirical humans provide only noisy, incomplete reflections of this truth. However, through
historical experience, philosophy, and mathematics, we have constructed certain generally accepted and
internally consistent systems of thought, that provide some insight into the underlying truth. To move past
the empirical human we may lean on these systems, and use them to inform the design of our agents. This
still involves human feedback, but large aspects of the problem are offloaded to more “objective” constructs. I
call this normative agency design because it specifies how agents should think and behave. I now describe
three styles of normative design—axiomatic, canonical and structural—each with a bullet on related work.
The Axiomatic Approach. The axiomatic approach starts with a set of simple, appealing properties
and uses them to derive powerful conclusions about agents that satisfy them. For instance, we may assert
that an ideal agent should exhibit transitive preference: if the agent prefers A to B, and B to C, it should
prefer A to C. This transitivity property is one of four “VNM” axioms that can be used to conclude that
“rational” agents are expected utility maximizers [31]. For an agent with multiple principals, we should
further consider axioms from social choice [4]. For instance, the Pareto axiom—if all principals prefer A to
B, so too should the agent—is used in both Arrow’s Impossibility Theorem [3] and Harsanyi’s aggregation
theorem [11]. These two results provide strong normative guidance on agent design: if we accept their
axioms, our agents should have a way to compare the utilities of their human principals.
• In Rethinking the Discount Factor [21], I show that agents satisfying a Dynamic Consistency axiom

[15, 16] and the VNM axioms must satisfy a generalized Bellman relation with state-action dependent
discounting [32]. This allows agents to represent a wider range of objectives than the standard fixed
discount Bellman relation while still precluding inconsistencies, and suggests there are human preferences
that standard fixed discount reinforcement learning agents cannot represent. In my paper on Consistent
Aggregation [22], I combine the prior result with a Pareto condition to show that the aggregation of
Markovian objectives with differing time preference must be non-Markovian. This tells us that general
purpose agents should take into account past compromises when making present decisions. Interesting
research from others relating to axiomatic design includes: [1, 7, 8, 28,29,30].

The Canonical Approach. The canonical approach accumulates a set of principles to form a knowledge-
base that is used to inform behavior, reasoning, and judgments, similar to the evolution of morality and
law. Examples include the Ten Commandments, common law, the US Constitution, and Asimov’s Laws
of Robotics. As compared to axioms, these principles may be less self-evident, more heuristic, and lack
a formal definition. While a particular principle may apply only in a limited set of circumstances, it will
typically synthesize several specific experiences into a more broadly applicable rule. Research in this area may
include proposing and analyzing principles, developing algorithms for principle learning and inference, and
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studying methods for principle collection, retrieval, application, transfer, analogical reasoning (common in
legal arguments), aggregation, debate, improvement, and invalidation. By working with a natural language
canon, and studying the ability of agents to follow and improve the canon, we may design agency that is
interpretable, aligned, and transfers knowledge across modalities.

• The application of a natural language canon to AI was made possible by instruction-tuned LLMs [19].
The most obvious way to construct a set of principles that governs AI is via human-engineering [2, 12].
For example, Constitutional AI [6] applies a set of human-designed principles to steer LLMs toward more
helpful and harmless behavior. Manual prompt engineering can be difficult, and our Automatic Prompt
Engineer paper [34] shows that effective instructions can be self-generated by LLMs, which is the first step
is learning a rich canon from data. This is something I am quite interested in actively working toward.
A natural hypothesis, parallel to the infamous reward hypothesis [7], is the language reward hypothesis:
“all of what we mean by goals and purposes can be well expressed in natural language”.

Structural Approach. The structural approach to normative design assumes a useful decomposition
or property with respect to a process or thing, and uses it to make better predictions. Whereas axioms
are asserted as desired properties of a thing, structural assumptions are made with respect to an empirical
quantity and typically arrived to via an inductive process. A good example is Newton’s Laws of Motion,
which are extensively verified and strongly predictive for “classical” systems. For AI, I would argue that
the most important structural assumptions are based on dependence and independence (e.g. statistical or
causal), as well as representational geometry (e.g. continuity and metric space assumptions).

• Of the three styles of normative design, the structural approach is by far the broadest in terms of existing
work (e.g. [17]). In terms of my own work, I have proposed to exploit local causal independence for
counterfactual data augmentation and shown that this can allow agents to generalize to unseen tasks
[26, 27]. A similar idea is used by my work on data augmentation for reward-conditioned reinforcement
learning [20] to improve sample efficiency of learning. I’ve also had a few papers that exploit geometric
assumptions, including my works on Maximum Entropy Gain Exploration [25] (proposes intrinsic goal
setting for frontier exploration), Prototype Goal Encodings [23] (uses specific goals to achieve general
ones), and Neural Metrics [24] (models the goal space as a quasi-metric space).

3 A Path Toward Superhuman Alignment
These three styles of normative design—axiomatic, canonical and structural—are all closely related, and
in some ways overlapping. They each work with smaller, simpler pieces to reason about the whole. If
the decomposition and aggregation mechanism are valid, then human-centric supervision on the pieces is
sufficient to supervise the whole, creating a pathway to superhuman intelligence and scalable alignment [9].
Of course, once the superhuman comes (e.g. language, calculus, industrial automation, the Internet), the
hope is that it fast becomes human, and through accumulated experience, we can start to supervise it
directly, and use it as a component toward the next level of “superhuman”.
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