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Abstract

In recent years, word vector arithmetic of the type king - man + woman ≈ queen has been applied
to solve an analogy task in order to evaluate word embeddings produced by various algorithms. This paper
investigates the idea of treating the relationships between word vectors as rotations of the embedding space
instead of as vector differences, and shows that such treatment can produce better average approximations of
target words.

1 Introduction

In recent years, word vector arithmetic of the
type king - man + woman ≈ queen has been
applied to an analogy task in order to evaluate
word embeddings produced by various algorithms
(Mikolov et al., 2013b; Mnih and Kavukcuoglu, 2013;
Pennington et al., 2014). Embeddings that do well
on this task are said to capture linguistic regulari-
ties (Mikolov et. al) or relational similarities (Turney,
2006).

Such arithmetic is mysterious in the fol-
lowing sense: before taking the vector sum,
king - man + woman, the literature normalizes
each vector so that it lies on the unit hypersphere
(i.e., ‖x‖ = 1), but generally, the vector sum
king - man + woman does not itself lie on the
unit hypersphere. Although the similarity between
vectors is measured by cosine distance, which ig-
nores lengths, it seems odd that the best way to
combine king, queen and woman is to produce a
vector not of length 1.

To illustrate the two dimensional case, con-
sider Figure 1, where we see that the vector sum
king - man + woman ends up inside the unit cir-
cle. We would need to normalize the sum to obtain
an approximation for the queen unit vector, but this
can alter relationships (note how queen - woman
and king - man do not point in the same direc-
tion).
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Figure 1: ‖king - man + woman‖ < 1.

By treating the relationship between man and
woman as a rotation of the embedding space instead
of a difference, I show that we can apply that same
rotation to the vector for king to achieve, on aver-
age, a better vector approximation for queen.

Using pretrained word embeddings, generated
by word2vec, I show that applying a rotation to
the analogy task produces approximations that are
closer (as determined by cosine similarity) to the tar-
get word in more than 75% of the analogies in the
GOOGLE and MSR datasets. In 4 of the 14 subcate-
gories of the GOOGLE dataset, using a rotation beats
arithmetic in more than 90% of cases.

Although the approximations produced by apply-
ing a rotation are better on average, the predictions
generated by selecting the closest words from the vo-
cabulary to such approximation are mixed. When
considering the single closest word, simple arith-
metic beats rotations in most cases. When consider-
ing the ten closest words, however, the rotation ap-
proach is superior.
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2 Problem Description

Let a, b, c, d be the word embedding vectors (all nor-
malized to unit norm)1 in the analogy, a is to b as c
is to d. The analogy task asks us to pick the best d
given a, b and c. For example, a, b, c, d might be the
word embeddings for man, woman, king, queen, re-
spectively.

Mikolov et al. (2013a) show that embeddings
trained by word2vec achieve surprisingly accurate
results on this task through the simple arithmetic
and cosine similarity.

That is, they choose d as:

d = arg max
d∗∈V

(sim(d∗, c− a + b))

where

sim(u, v) =
u · v
‖u‖‖v‖ .

This is odd because c− a + b is serving as a pre-
diction for d, but ‖d‖ = 1 and, in general, ‖c− a +
b‖ 6= 1. We could normalize the prediction, but
as can be seen in Figure 1, normalizing the predic-
tion alters the direction of linear differences such as
queen− woman. Figure 2 shows the 3-dimensional
case.

b

a c

c - a + b

Figure 2: Simple arithmetic in 3 dimensions.

We can overcome this problem by treating the
relationship between word vectors as a norm-
preserving rotation of the d-dimensional embedding
space, R : Rd → Rd rather than as a linear differ-
ence, because ‖Rx‖ = ‖x‖ ∀x ∈ Rd.

By treating the relationships between word vec-
tors in this way, I show that we can, on average, im-
prove the approximation for d, as measured by co-
sine similarity.

3 Models

In this section, I define the 3 candidate rotations to
be applied to c in order to approximate d.

3.1 Rotation from a to b

The analogy, a : b :: c : d, says that the relation-
ship between a and b is the same as the relationship
between c and d. Thus, if b is a function, f , of a,
b = f (a), then by hypothesis, d = f (c).

Define Ra→b as the rotation of the embedding
space using the plane containing the origin, a and
b as the plane of rotation that maps a onto b. It will
be a rotation by θ, where cos θ = sim(a, b) = a · b.
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Figure 3: Ra→b in 3 dimensions.

Then b = Ra→ba, and we can approximate d as
Ra→bc and predict d as:

d = arg max
d∗∈V

(sim(d∗, Ra→bc)) .

This is illustrated in Figure 3.

3.2 Midpoint rotation

If a : b :: c : d then c : d :: a : b. But b = Ra→ba
whereas d is only approximated by Ra→bc.

Instead, consider the rotation of the embedding
space, Rmid, that maps the normalized midpoint of
the segment (a,c) onto the normalized midpoint of
the segment (b, d). For such Rmid, we expect that:

sim(b, Rmida) = sim(d, Rmidc).

.
This is illustrated in Figure 4.
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Figure 4: Rmid in 3 dimensions.
1The literature generally normalizes the vectors before adding them. See Mikolov et al. (2013b) and Mnih and Kavukcuoglu (2013).

The author’s own experiments confirmed that using unit vectors produces better results on the analogy task described.



For the analogy task we don’t know d and cannot
precisely calculate Rmid. However, we can approxi-
mate it by substituting an approximation for d, such
as Ra→bc.

Therefore, we choose:

Rmid = Rp→q, where

p =
a + c

2
, and q =

b + Ra→bc
2

as the rotation of the embedding space using the
plane containing the origin, p and q as the plane of
rotation that maps p

‖p‖ onto q
‖q‖ .

3.3 Three point rotation

A third candidate asserts that if a : b :: c : d then
a : c :: b : d. The latter analogy is often nonsense (or
rather arbitrary), so we wouldn’t expect this to work
that well, except in special cases. In any case, if this
were true, then the following transformation should
produce d when applied to c:

R3point = R−1
c→aRa→bRc→a

This is illustrated in Figure 5.
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Figure 5: R3point in 3 dimensions.

4 Experiments

4.1 Experiment 1: Analogy Closeness

For Ri ∈ {Ra→b, Rmid, R3point}, the first experiment
compares:

sim(d, c− a + b)

to

sim(d, Ric)

where d is the word vector for the true value.
This experiment compares the approximation to the
true value; it does not produce a prediction by con-
sidering all possible values in the vocabulary to pick
the closest value, which task is performed in Section
4.3.

The word vectors used were pre-trained
word2vec embeddings made available by Google2,
which use a vocabulary size of 3 million and 300
dimensional embeddings.

The analogies used were taken from the
GOOGLE dataset of 19544 analogies3 and the MSR
dataset of 8000 analogies.4 Of the 8000 analogies
in the full MSR dataset, 978 were skipped due to
words not being in the vocabulary, leaving 7022
analogies.5

The results show that both Ra→b and Rmid pro-
duce better approximations than simple arithmetic
in a majority of cases for both the GOOGLE and
MSR analogies. See Table 1 for a summary of the
results, where ”Avg. Diff.” is defined as the average
of

sim(d, Ric)− sim(d, c− a + b)

over all analogies, and ”Win %” is the defined as the
percentage of analogies for which

sim(d, Ric) > sim(d, c− a + b).

It is interesting that the average cosine distance
between the approximation and the true result is
less for approximations produced by Ra→b than for
those produced by Rmid, but Rmid outperforms sim-
ple arithmetic in more cases than does Ra→b. A di-
rect comparison of Ra→b to Rmid, using Ra→b as the
baseline, in Table 2, shows that Ra→b is a better choice
for producing approximations despite Rmid outper-
forming simple arithmetic in more cases.

4.2 Experiment 2: Closeness by Category

The second experiment compares the winners, Ra→b
and Rmid, of the first experiment to the baseline sim-
ple arithmetic approach across each of the 14 types
of analogies in the GOOGLE dataset. The categories
and results are shown below in Table 3.

In 4 of the 14 subcategories, using the rotation
Rmid beats arithmetic in more than 90% of cases.

2code.google.com/archive/p/word2vec/
3word2vec.googlecode.com/svn/trunk/questions-words.txt
4research.microsoft.com/en-us/projects/rnn
5The excluded analogies were possessives like daughter : daughter’s :: school : school’s, since daughter’s and school’s

were not in the vocabulary. One could drop the apostrophe and include these as plurals, but plural relationships are already included in
the dataset and certain plurals like lifes would not make sense.



That there is such variance between different cat-
egories is consistent with the past work of Levy
and Goldberg (2014), who show that the accuracy of
simple arithmetic on the analogy task ranges from
14.55% (for the currency category) to 90.51% (for
the capital-common-countries category).

4.3 Experiment 3: Evaluating Analogies

This experiment evaluates the effectiveness of sim-
ple arithmetic, Ra→b and Rmid for solving analogies
by finding the nearest neighbors to the approxima-
tions they produce. The experiment asks whether
d is closest word in the vocabulary, as measured by
cosine similarity, to the approximation produced by
the model (e.g., Ra→bc). Separately, I considered
whether d was among the ten closest words.

Because the closest word to the approximation
is often either b or c, and consistent with past lit-
erature, I removed b and c from the vocabulary
when choosing the closest word. See Mnih and
Kavukcuoglu (2013). I did not similarly remove b
and c when looking at the ten closest words, as they
are not problematic in this case.

The results, in Table 4, show that Ra→b performs
worse than simple arithmetic when considering only
the closest word, but does better when considering
the ten closest words. Rmid was competitive with
simple arithmetic when looking only at the clos-
est word, and outperformed simple arithmetic when
looking at the ten closest words.

Although the accuracies of all methods improved
when given ten guesses, it is interesting that the im-
provement of Ra→b is the sharpest; allowing extra
guesses lifts Ra→b from last place on both datasets to
being the winner of the MSR dataset and the most
categories in the GOOGLE dataset.

5 A Note on SemEval-2012 Task 2

SemEval-2012 Task 2,6 appearing in Jurgens et al.
(2012), has been used to measure semantic reg-
ularities in word vectors (Mikolov et al., 2013b;
Levy and Goldberg, 2014). The SEMEVAL dataset
covers 79 categories of semantic relationships.
For each category, 3 or 4 prototypical word
pairs exemplify the relationship, and the task
involves ranking approximately 40 target word
pairs in that category according to how well
they reflect the relationship. For example, the
CLASS-INCLUSION: Taxonomic category is ex-
emplified by the word pairs, flower:tulip,

emotion:rage and poem:sonnet, and the task is
to rank 41 target word pairs including hair:brown
and pet:dog by the degree to which they belong in
the same category.

If a : b is a prototypical word pair and c : d is
a target word pair, past authors have evaluated the
relational similarity in two ways:

1. as an analogy, by evaluating
sim(d, c− a + b), or

2. as a relationship, by evaluating
sim(d− c, b− a).

Mikolov et al. (2013b) and Levy and Goldberg
(2014) found that the latter option produces better
results.

Thinking in terms of rotations changes the for-
mer option. That is, instead of evaluating sim(d, c−
a + b), we can evaluate sim(d, Rc). This produces
the following results:

Arithmetic Ra→b Rmid
Accuracy 40.7% 37.7% 41.1%

The second option, comparing the relationships
directly, achieves an accuracy of 44.8%, outperform-
ing all analogical approaches. Thinking in terms of
rotations becomes a bit trickier for this option. We
can calculate each relationship as Ra→b and Rc→d,
but there is no best way to determine their similar-
ity.

One approach is to use a generalized concept of
an angle that allows an angle to be defined between
two arbitrary subspaces and then rank target word
pairs by the angle between the planes of rotation of
Ra→b and Rc→d. This throws out the direction of the
rotation, but we can correct this by multiplying by
the sign of sim(d − c, b − a). Applying the defini-
tion of an angle between flats given by Jordan, the
algorithm for which is described in Knyazev and
Argentati (2002) and implemented in the krypy7

python package, this approach achieves a relatively
respectable accuracy of 43.5%.

The easier, and perhaps more natural, approach
to comparing the rotations is precisely the approach
of Mikolov et al. (2013b) described above. The differ-
ence vectors b− a and d− c lie in the planes of rota-
tion of Ra→b and Rc→d, respectively. In addition to
the plane of rotation, the difference vectors also con-
tain information about the direction and magnitude of
the rotation.

6https://sites.google.com/site/semeval2012task2/
7https://github.com/andrenarchy/krypy



No. of Ra→b Rmid
Category Analogies Avg. Diff. Win % Avg. Diff. Win %

capital-common-countries 506 0.023 61.7% 0.022 83.8%
capital-world 4524 0.035 78.0% 0.022 85.2%
city-in-state 2467 0.022 67.2% -0.003 50.6%
currency 866 -0.000 50.2% -0.002 47.6%
family 506 0.028 80.2% 0.011 72.5%
gram1-adjective-to-adverb 992 0.067 85.0% 0.019 76.1%
gram2-opposite 812 0.050 75.6% 0.005 60.6%
gram3-comparative 1332 -0.007 40.0% 0.006 62.5%
gram4-superlative 1122 -0.004 45.7% 0.006 59.1%
gram5-present-participle 1056 0.067 92.4% 0.047 98.6%
gram6-nationality-adjective 1599 0.007 51.8% 0.017 88.7%
gram7-past-tense 1560 0.063 87.2% 0.044 94.1%
gram8-plural 1332 0.080 95.4% 0.049 96.8%
gram9-plural-verbs 870 0.051 75.9% 0.039 90.1%

Table 3: Comparison of Ra→b and Rmid to simple arithmetic by analogy category in the GOOGLE dataset

Closest word Closest ten words
Category Arithmetic Ra→b Rmid Arithmetic Ra→b Rmid

GOOGLE dataset 54.1% 41.0% 52.5% 60.7% 61.2% 62.6%
MSR dataset 39.1% 30.3% 40.4% 42.5% 48.7% 47.9%

GOOGLE dataset by category
capital-common-countries 61.5% 49.8% 60.9% 67.0% 62.1% 68.8%
capital-world 62.4% 43.4% 61.5% 68.5% 68.0% 71.3%
city-in-state 41.1% 27.1% 35.8% 46.3% 46.3% 43.5%
currency 26.8% 4.5% 21.6% 38.0% 17.3% 33.9%
family 75.1% 62.6% 72.9% 86.0% 84.6% 85.4%
gram1-adjective-to-adverb 18.0% 13.3% 17.6% 27.2% 38.5% 27.8%
gram2-opposite 31.2% 20.1% 26.8% 37.2% 31.2% 33.7%
gram3-comparative 56.2% 38.8% 57.7% 56.7% 63.5% 60.1%
gram4-superlative 36.3% 15.0% 31.4% 38.2% 35.1% 42.6%
gram5-present-participle 62.4% 62.6% 64.2% 75.4% 83.8% 82.1%
gram6-nationality-adjective 86.1% 82.9% 86.2% 92.3% 92.5% 92.9%
gram7-past-tense 49.0% 37.9% 47.6% 60.6% 65.9% 65.4%
gram8-plural 74.5% 78.0% 79.4% 77.0% 85.5% 83.9%
gram9-plural-verbs 49.7% 20.0% 41.8% 59.5% 50.3% 61.5%

Table 4: Accuracy on analogy task at precision levels of 1 and 10.



Therefore, the approach taken by Mikolov et al.
(2013b) and Levy and Goldberg (2014) to SemEval-
2012 Task 2 is consistent with the idea of thinking
about relationships between word vectors as rota-
tions of the embedding space.

6 Conclusion

I’ve introduced a new way to evaluate and think
about the relationships between word vectors: as a
rotation of the embedding space instead of as a vec-
tor difference. So long as we are using cosine simi-
larity to evaluate the similarity between normalized
word vectors, this method makes better geometric
sense. When used for the word analogy task, it pro-
duces a better average approximation of the target
word vector.

These results are neither groundbreaking nor im-
mediately useful from a practical perspective. They
do, however, offer a new way to think about and vi-
sualize the word embedding space, which may be
helpful for future research. Avenues for follow-up
may include exploring whether applying rotations
to the original unnormalized word embedding can
produce better unnormalized approximations, and
the use of vector approximations to expand a trained
vocabulary with new or foreign words.
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