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CoDA more than doubles sample efficiency in locally factored online and offline off-policy RL

Abstract

We leverage local causal independence to improve the sample
efficiency of off-policy reinforcement learning. We do this by
generating counterfactual experiences using a novel
Counterfactual Data Augmentation (CoDA) algorithm and
Local Causal Modeling (LCM) framework.

Contributions

« LCMs, which condition a causal model on a local state set

* CoDA, which generalizes HER / domain randomization

 Locally conditioned causal structure discovery using a mask

« Significant performance improvements for off-policy
reinforcement learning in locally factored tasks
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Algorithm 1 Mask-based Counterfactual Data Augmentation (CoDA)

Local Causal Models (LCMs)

s2,a2,82’ < t2

function CODA (transition t1, transition t2):
sl,al,sl1’ < t1

ml, m2 < MASK(s1,al), MASK(s2,a2)
D1 <~ COMPONENTS(m1)

D2 <— COMPONENTS(m2)

d <— random sample from (D1 N D2)
§,8,8° < copy(sl,al,sl?)
5[d],a[d],5’ [d] « s2[d],a2[d], s2 [d]
D + COMPONENTS(MASK(§, &))
return (3,4,3’) ifd € D else ()

function MASK(state s, action a):
Returns (n+m) x (n) matrix indicating if the n
next state components (columns) locally depend
on the n state and m action components (rows).

function COMPONENTS(mask m):
Using the mask as the adjacency matrix for G~
(with dummy columns for next action), finds the
set of connected components C' = {C};}, and
returns the set of independent components

D =1{G; =J,C}|C" C powerset(C)}.
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Structural Causal Model (SCM) that
marginalizes across all possible
transitions

Local Causal Model (LCM) that
behaves like the global SCM in local
subspace [

Results: Batch RL

 Continuous control Pong environment

« We use LCMs to formalize the notion of local independence

« The LCM for a subspace £ c S of the state space can be
derived from a Structural Causal Model (SCM) by restricting
the ranges of the state variables to £

« The LCM can be used to simplify causal reasoning about

« Expand a batch dataset by (1) training
our mask model on the provided data, then
(2) using the model to generate CoDA data.
« Using CoDA data gives 2x effective data size, and gives a
3x performance boost at small data sizes

interventions or counterfactuals that are within the bounds of

|D| Real data MBPO Ratio of Real:CoDA [:MBPO] data (ours)
local Subspace L. (1000s) Ir Ir: 1M Ir:1c Ir:3c 1r:5¢c 1r:3c: 1M
25 13.2+0.7 1854+1.5 43.84+2.8 409+25 384+49 46.8+3.1
50 22.8 3.0 36.61x4.3 66.6 3.8 644x3.1 62.5X£3.5 704L38
75 43.2+49 46.0+£4.7 73.4+28 76.7+26 75.0+3.4 T74.6+£3.2
100 63.0+ 3.1 66.444.9 7T78+20 82715 76.64+3.0 73.7£29
2 e 2 150 7744+12 726156 822+18 85.8+14 84.2+£1.0 79.743.6
Defl n I ng a Local MOdeI Wlth a MaSk 250 782427 779424 8.0£29 87818 87.0x£1.0 783149

counterfactual samples. The first proposal is rejected because one of its factual sources (the blue ball) is not locally
factored. The third proposal is rejected because it is not itself factored. The second proposal is accepted.

To detect local independence, we adapt the Set Transformer [3]
and use the product of its attention masks as a locally
conditioned model of feature-wise causal dependencies in the
forward dynamics. This extends the global mask-based causal
discovery of GraN-DAG [2].

Results: Goal-Conditioned RL

The CoDA Algorithm

« CoDA obtains state-of-the-art results in FetchPush and
doubles sample efficiency of HER in challenging S1ide2

« Here we use the same heuristic mask based on physical
separation (objects independent if >10cm apart)

Whenever a pair of transitions can be factored into the same two
locally independent components, we can mix-and-match the

components to form new causally valid, counterfactual samples. Example Input:
We call this Counterfactual Data Augmentation (CoDA). This Given a state that describes 2 Q10123 -0.73, 131, Lo, o FetchPush-1 o Side2
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