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1. Abstract

At the very foundation of financial theory lies the theory of decision-making under uncertainty. 

Understanding how and why people make decisions, as well as how they should be making 

decisions, is crucial. The quantitative treatment of preferences under uncertainty constitutes some

key assumptions in Markowitz’s Modern Portfolio Theory and the widely used Capital Asset 

Pricing Model, among others. Several decades ago, this quantitative treatment could be equated 

with Expected Utility Theory, and according to Machina (1987), “was considered one of the 

success stories of economic analysis”. Since then however, Expected Utility theory has been 

challenged on several fronts, and its descriptive validity today is, no pun intended, quite 

uncertain.

This paper is written as a thorough examination of Expected Utility theory, from its roots, to its 

validity as a model, both descriptive and prescriptive. The failures of Expected Utility as a 

descriptive model are outlined and examined in detail. Observed dynamic inconsistency among 

rational agents calls into question the prescriptive validity of Expected Utility. The issue is 

resolved with a discussion of outcome spaces, from which several complications arise. Financial 

applications of Expected Utility are discussed, and an alarming observation is made: many of the

descriptive failures of Expected Utility serve as the root cause for its incorrect usage as a 

prescriptive model. These incorrect applications are identified, and the paper concludes with a 

few brief examples of how one might properly construct a Utility function. 

2. Expected Utility: It’s history and usage

The roots of Expected Utility theory trace back to the early 18th century, when Bernoulli 

proposed that evaluating uncertain monetary outcomes using expected value was neither an 

adequate method of describing human behavior, nor did it always produce rational choices. He 

proposed that individuals attribute utility values to each final state of wealth, and attempt to 

maximize this utility when making decisions. The theory resolved several paradoxes in decision 

theory, including the notable St. Petersburg Paradox.  

A breakthrough in Expected Utility theory came in 1944, when John von Neumann and Oskar 

Morgenstern formalized the theory with an axiomatic approach. They showed that if rational 
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agents follow four basic axioms of choice1, then they possess what is termed a von Neumann-

Morgenstern (VNM) utility function. The theory states that rational agents always attempt to 

maximize their expected utility, defined as the probability-weighted average of the VNM utility 

of each final state of wealth. 

As an example, an individual might be presented with the choice of receiving $10 or having a 

50-50 chance of receiving either $15 or $5. We call each option a lottery, and express it in 

shorthand as {x1, p1; x2, p2; …; xn, pn}2, where outcomes x1, x2, …, xn are mutually exclusive, 

unambiguous, and collectively exhaustive, with p1, p2, …, pn as their respective probabilities. 

Obviously, Σp = 1. The individual in the above example would be choosing between {10, 1} and 

{15, .5; 5, .5}. According to Expected Utility theory, the individual with wealth w would possess 

a VNM utility function, U( · ), and would value the utility of each lottery as ΣU(w+xi)pi. There 

are two important things to note here. First, utility is calculated based on final wealth states and 

not on absolute changes in wealth. Second, utility is linear in terms of probabilities, so that a 

100% chance of receiving any amount is exactly twice as valuable as a 50% chance of receiving 

that same amount (and a 50% chance of receiving nothing), regardless of what VNM utility 

function is used. 

A common assumption is that individuals are risk-averse, which implies that their VNM utility 

functions are concave. That is, the marginal utility of an additional dollar of wealth falls as 

wealth increases. The individual above, would therefore choose to receive $10, since the 

concavity of U( · ) implies (1)U(w+$10) > (0.5)U(w+$15) + (0.5)U(w+$5). Even though both 

lotteries have the same expected value (w+$10), the risk-averse individual prefers the one that 

has less uncertainty.

As a result of the logical validity of its axioms, the Expected Utility hypothesis quickly garnered 

wide acceptance in the field of decision theory. It has since been applied extensively in 

Economics, Finance, and Game Theory. It has been used, among other things, for the purposes of

personal financing planning, formulating asset allocation strategies, pricing insurance, and 

determining optimal strategies in games of chance. 

In contrast to this widespread use however, is a substantial body of evidence suggesting that the 

theory fails as a descriptive model. Empirical results have shown that the vast majority of people 

make choices that systematically violate the predictions of Expected Utility theory. More 

1 The four axioms are completeness, transitivity, continuity, and independence. A full statement of the axioms and 
the resulting proof of the Expected Utility hypothesis can be found at 
http://homepage.newschool.edu/het//essays/uncert/vnmaxioms.htm 
2 Curly brackets { } have been used as opposed to the usual ( ) for the purpose of clarity
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specifically, it has been shown that the independence axiom, which implies linearity in 

probabilities, does not hold descriptively. 

To demonstrate, suppose an individual has a strict preference between two lotteries. Say they 

prefer receiving $10000 with certainty, {10000, 1}, to receiving $20000 75% of the time, 

{20000, .75}3. The independence axiom states that for any probability p, they will always prefer 

the “mixture lottery” consisting of a p chance of the preferred option and a (1-p) chance of any 

lottery X to the one consisting of a p chance of the less preferred option and a (1-p) chance of 

lottery X. Consider the two lotteries above, and suppose p = 0.1 and lottery X is the zero lottery 

(0, 1). Then the independence axiom implies that the lottery {10000, .1} is preferred to {20000, .

075}. In reality, the majority of individuals may prefer $10000 with certainty to a 75% chance of 

$20000, but contradict the independence axiom by choosing a 7.5% chance of $20000 over a 

10% chance of $10000.4 This contradiction of the independence axiom is just one of the many 

empirical failures of the independence axiom and Expected Utility.

3. Failures of Expected Utility as a Descriptive Model

There are several well-documented systematic failures of Expected Utility theory as a descriptive

model. These can be broadly classified into perceptual failures and non-linearity failures.5 The 

first, which results entirely from biases in human perception, includes the isolation effect, 

framing effects, and preference reversal phenomenon. The second implies that humans have non-

linear probability preferences, and is entirely independent of perceptional biases. It includes the 

Allais Paradox, common ratio effect, and calibration failure, among many others. Many 

empirical examples have a hint of both perceptual failures and non-linear probability failures, but

the difference, as will be demonstrated, is very clear. Before examining the data, it is important 

to note that these empirical results have absolutely no bearing on the normative validity of 

Expected Utility theory, for such an evaluation could be done only logically and philosophically. 

Borrowed Examples of Perceptual Failures

The three selected examples below illustrate empirical failures of Expected Utility that occur 

because of biases in perception. The biases at fault are examined afterwards.

3 Note that {$2000,.75} is unambiguous shorthand for {$2000,.75; 0,.25}
4 This statement not tested, but rather inferred from several very similar and statistically significant results found in 
Kahneman & Tversky (1979) among others
5 This is an original classification created for the purposes of this paper
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Example 1: The Isolation Effect6

“Consider the following two-stage game. In the first stage, there is a probability of .

75 to end the game without winning anything, and a probability of .25 to move into 

the second stage. If you reach the second stage you have a choice between {4000, 

0.8} and {3000, 1}. Your choice must be made before the game starts, i.e., before the 

outcome of the first stage is known.”

If the first stage is ignored and only the second stage is presented, the majority of people choose 

{3000, 1}. Accordingly, when presented with both stages isolated as above, the majority of 

people choose {3000, 1}. However, when the two stages of the game are not isolated, i.e., 

respondents are asked to choose between {4000, .2} and {3000, .25}, the majority choose {4000,

.2}. Thus, two different representations, or framings, of the same problem generate contradictory 

choices. This effect is also an example of a framing effect. 

Example 2: Framing Effects7

“Q1: In addition to whatever you own, you have been given $10000. You are now 

asked to choose between {5000, 1} and {10000, 0.5}.

Q2: In addition to whatever you own, you have been given $20000. You are now 

asked to choose between {-5000, 1} and {-10000, 0.5}.”

The two choice problems above are identical, in that they produce the exact same distributions of

final wealth. Both are equivalent to a choice between {15000, 1} and {10000, 0.5; 20000, 0.5}. 

Risk aversion predicts that {15000, 1} is chosen in both cases, but the majority of people select 

{10000, 0.5; 20000, 0.5} when the choice is framed as in Q2. This is contradictory to the risk 

aversion assumption, but more importantly, it is self-contradictory since the majority of people 

presented with both Q1 and Q2 will choose {15000, 1} in Q1 and {10000, 0.5; 20000, 0.5} in 

Q2. 

Example 3: Preference Reversal8

“In this study [Lichtenstein & Slovic (1971)], subjects were first presented with a 

number of pairs of bets and asked to choose one bet out of each pair. Each of these 

pairs took the following form: 

P-bet {X, p: x, 1-p}  versus  $-bet {Y, q; y, 1-q}

6 Borrowed from Kahneman & Tversky (1979)
7 Adapted from Kahneman & Tversky (1979)
8 Borrowed from Machina (1987) who borrowed it from Lichtenstein & Slovic (1971)
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Where X > x, Y > y, p > q, and Y > X (the names “P-bet” and “$-bet” come from the 

greater probability of winning in the first and the greater possible gain in the 

second).”

After this first choice problem, subjects were asked to value each bet individually (state the 

maximum price they would pay for the bet). Of the 173 subjects who were each presented with 6

such choices between P-bets and $-bets, 73% made a preference reversal every time they chose 

the P-bet over the $-bet. That is, when asked to value the P-bet and $-bet individually, they gave 

a higher value to the $-bet despite having chosen the P-bet in an outright choice.

Where Perception Fails

In his Nobel lecture paper “Maps of Bounded Rationality: Psychology for Behavioral 

Economics”, Kahneman explores several of the biases at fault for the apparently contradictory 

behaviors above. A distinction between two different ‘modes’ of decision-making, intuition and 

reasoning, is crucial. “While intuition is fast, automatic, effortless, and emotional, reasoning is 

slow, controlled, effortful, and neutral.”9 

Note that in all three examples above, the choices made are largely intuitive. In order to make 

these choices, most individuals do not sit down, consider their VNM utility function (or any 

other decision making model for that matter), and make careful calculations to determine their 

choice. While there may be some reasoning involved in making the choices, the final decision 

relies largely on intuition. This tendency to rely on intuition for decisions involving uncertainty 

is not isolated to the three choice examples above, but can be generalized to most choice 

problems. Furthermore, the rules governing intuition are generally similar to those governing 

perception, and thus our decision making is subject to several biases in perception.10 

The most notable biases arise from differences in accessibility. Accessibility is defined as the 

ease with which we can interpret certain information about things we perceive (i.e. people, 

objects, or for our purposes choice problems). 

Consider three different representations of the same number: its canonical form 21233171, its 

decimal form 1880064, and its hexadecimal form 1cb000. All three forms represent the same 

number, and therefore contain the exact same information. However, some pieces of information 

are more accessible than others. The magnitude of the number is easily accessible from its 

decimal form, but not so accessible from its canonical form. It is much easier to determine the 

greater of 1880064 and 4826809 than it is to determine the greater of 21233171 and 136. On the 

9 Kahneman (2003) pg. 1451
10 Kahneman (2003) pg. 1450

5



other hand, the prime factorization of the number is immediately accessible from its canonical 

form, but not from its decimal or hexadecimal forms. Determining that 212 is a factor of 1880064 

requires some calculation, but is a trivial task given the canonical representation. To one familiar 

with hexadecimal notation, it is trivial that 212 (or 163) divides 1cb000. This last point 

demonstrates that sufficient training or familiarity with specific types of representations might 

make certain information more accessible, and therefore help in making intuitive judgments. 

In a similar fashion, the method in which a choice problem is represented or framed alters the 

accessibility of its various attributes. Because our intuitive judgment passively accepts the 

information given and is not concerned with reframing problems, we are left only with the 

narrow frame provided and have only the information that was readily accessible. Furthermore, it

should be noted that our perception and thus intuition is concerned primarily with changes in 

states, as opposed to the states themselves. Both the isolation effect and framing effects can be 

explained as a direct consequence of these factors. 

Examine the framing effects problem. In both Q1 and Q2, the first sentence about a certain fixed 

gain is almost ignored completely by our intuition. This changes the state of our wealth, but the 

change is prior to the choice problem, which is what our intuition is most concerned with. In Q1, 

the frame provided makes accessible to us information about a potential gain, whereas in Q2, the 

frame makes accessible to us information about a potential loss. As discussed later in this report, 

it is common for people to exhibit risk-averse behavior when faced with potential gains and risk-

seeking behavior when faced with potential losses11, thus explaining their contradictory choices 

in Q1 and Q2. See you if you can use the perceptual biases discussed to explain the isolation 

effect failure.

Providing an explanation for the preference reversal phenomenon is not as easy, and requires 

some consideration. It is thus surprising that preference reversal was in fact predicted by Slovic 

and Lichtenstein before it was empirically observed. Their prediction arose from an observation 

that individuals value probabilities of positive outcomes more in direct choice problems, but 

value the $-amount of positive outcomes more when determining buying and selling prices of 

lotteries.12 In psychological terms, this is called a response mode effect, and is a result of people 

using a different cognitive method for responding to choice problems than the one they use in 

responding to valuation problems.13 

11 This behavior is by itself contradictory to Expected Utility theory, but it is unclear whether it is a perceptual 
failure or a non-linearity failure. This will be discussed later.
12 Slovic and Lichtenstein (1983), as referenced by Machina (1987)
13 Machina (1987)
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Non-linearity Failures

A second class of systematic failures arises from preferences that are non-linear with respect to 

probabilities. The perceptual failures that were discussed are clearly caused by irrational 

behavior, but it is not so evident whether this is true of non-linearity failures. While you read the 

following examples of non-linearity failures, ask yourself if the observed behavior is rational or 

not. 

The Allais Paradox and Common Ratio Effect

In 1953, Allais proposed one of the first challenges to Expected Utility theory, the Allais 

Paradox. Consider the following two choice problems: 

i. Choose between a1: {1 million, 1} and a2: {5 million, .10; 1 million, .89; 0, .01}

ii. Choose between a3: {5 million, .10} and a4: {1 million, 0.11}

If the independence axiom holds, then a choice of a1 in the first pair implies a choice of a4 in the

second pair and a choice of a2 in the first implies a choice of a3 in the second.14 Contrary to this 

prediction, several researchers have shown that the majority of people presented with the choice 

problems above pick a1 in the first and a3 in the second. While the Allais Paradox is an isolated 

example of non-linear preferences, there are several classes of systematic violations of the 

independence axiom.15 

The common ratio effect describes the class of violations that take the form of the two choice 

problems below, where p > q, Y > X > 0, 0 ≤ r ≤ 1:

i. Choose between b1: {X, p; 0, 1-p} and b2: {Y, q; 0, 1-q}

ii. Choose between b3: {X, rp; 0, 1-rp} and b4: {Y, rq; 0, 1-rq}

Recall the violation of independence given in the last paragraph on page 2. This was an example 

of the common ratio effect using X = $10000, Y = $20000, p = 1, q = .75, and r = 0.1. While the 

independence axiom would mean a choice of b1 in the first pair implies a choice of b3 in the 

second, empirical evidence shows that for at least some choices of X, Y, p, q, and r, the majority 

of people exhibit preferences of b1 in the first and b4 in the second.

14 Consider lotteries x: {5M, 10/11; 0, 1/11} and y: {1M, 1}; the two choice problems in the Allais Paradox are both 
mixture lotteries involving x and y, and so according to the independence axiom, the choices should be consistent 
with the preference ordering of x and y. 
15 Actually, the Allais Paradox is an example of the common consequence effect, a general class of violations that is 
not dealt with in this paper. For more information on this see Machina (1987) pg. 129.
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A Failure in Calibration

Another troublesome failure of Expected Utility as a descriptive model is that it cannot explain 

the significant risk aversion that individuals exhibit over small or even modest stakes. As 

discussed in Rabin (2000), the Expected Utility curve cannot be calibrated to match this 

’extreme’ risk aversion. Empirical results, such as in Kahneman & Tversky (1991) among others,

have demonstrated that a majority of people generally reject 50-50 gain/loss lotteries of the form 

{G, .5; -L, .5} unless the potential gain is in the order of two times the loss. That is, regardless of 

stakes, unless G is about twice as large as L, people tend to reject the lottery even though its 

expected value might be positive. Rabin demonstrates the troublesome implications of assuming 

individuals possess a VNM utility curve given their observed risk aversion over small and 

modest stakes.

Take for example an Expected Utility maximizing individual who turns down the lottery {11, .5; 

-10, .5} at all wealth levels. Since the individual would turn down {11, .5; -10, .5} if he had 10 

more dollars, this means the first additional 10 dollars have more marginal utility than the next 

11 dollars. Let X be the average utility of the first 10 dollars and Y be the average utility of the 

next 11. Then 10X > 11Y, so that 
10
11

X > Y. Due to risk aversion, the 1st dollar is the most 

valuable of the first 10, and the 21st dollar is the least valuable of the next 11. It follows that the 

21st dollar is worth less than 
10
11

 of the 1st. By an analogous argument, the 42nd dollar is worth 

less than 
10
11

 of the 21st, the 63rd less than 
10
11

 of the 42nd, and so on. Suppose the 1st dollar 

is worth 1, then the summed utility of every 21st dollar is less than 1 + 
10
11

 + ( 1011 )
2+

( 1011 )
3… = 11 and the summed utility of all dollars is less than 21*11 = 231. Starting at any 

wealth level and using a similar argument, it can be shown that the utility of every 21st dollar lost

is at least 
11
10

 of the last dollar. Then the summed utility of the first 21*8 = 168 dollars lost is 

at least 21*(1 + 
11
10

 + ( 1110 ) 2 +…+ ( 1110 ) 8) = 240.15. It follows that if Expected Utility 

maximizing individuals turn down the lottery {11, .5; -10, .5} at all wealth levels, then they will 

turn down any lottery that involves a 50% chance of losing $168, regardless of how large the 

potential gain is (even if that gain is infinite!).
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Using a generalized algebraic argument of the same flavor with slightly stronger inequalities, 

Rabin reduces the above conclusion to turning down any lottery that involves a 50% chance of 

losing $100. As another example, he shows that an individual who turns down {105, .5; -100, .5}

at all wealth levels will turn down any lottery involving a 50% chance of losing $2000. This 

means that the latter individual prefers to have $200,000 to a 50-50 chance of having either 

$198,000 or $50,000,000,000 (or any other arbitrarily high number). 

While these rather ridiculous conclusions hinge on the unrealistic assumption of small stakes risk

aversion for all wealth levels, Rabin further generalizes his theorem to include specified ranges 

of wealth. Take for example an individual known to turn down the lottery {105, .5; -100, .5} for 

all levels of wealth less than $300,000. Note that such an individual should be relatively easy to 

find given the findings of Kahneman & Tversky (1991). Suppose this person is at a current 

wealth level of $290,000 and behaves according to Expected Utility theory. Then Rabin’s theory 

concludes that they will turn down {71799110, .5; -20000, .5} – still a rather ridiculous 

conclusion. 

The ultimate implication of Rabin’s work on calibration is that Expected Utility maximizers 

should be very close to risk neutral (use expected value to make decisions) over modest stakes. 

This is clearly not the case and the empirical evidence shows that the majority of individuals 

display risk-averse behavior even over very small stakes.16 

Distinguishing between Perceptual and Non-linearity Failures

I propose that the ultimate rule for distinguishing between perceptual and non-linearity failures is

as follows:

If, after being made aware of his perceptual biases and all relevant information regarding 

the problem, a subject changes his response to a choice problem from a non-expected 

utility response to a response that is consistent with expected utility theory, then the 

failure of his initial response was a perceptual failure.

If a subject maintains a response inconsistent with expected utility theory, even after 

being made aware of his perceptual biases and all relevant information regarding the 

problem, then his response is a non-linearity failure.

We can conclude from the findings of Macrimmon (1968), Moskowitz (1974), and Slovic and 

Tversky (1974) as referenced in Machina (1987), that individuals who display non-expected 

utility preferences in the Allais Paradox generally do not change their opinion, even after being 

16 For example, see Kahneman & Tversky (1979)
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presented with several arguments against their choice and careful consideration. Thus, the Allais 

Paradox can generally be considered a non-linearity failure. 

Certain distinctions are not so easy to make. The reader may have noticed that the first example 

of a perceptual failure given, the isolation effect, is almost analogous to the common ratio effect. 

Determining whether an individual making a non-expected utility choice in such a situation is 

exhibiting a perceptual failure or a non-linearity failure of Expected Utility therefore comes 

down to whether or not they revise their initial choice upon further consideration. 

As an example, consider an individual who is presented with the choice problem outlined in the 

isolation effect on page 417. Suppose that they display non-expected utility preferences by 

initially choosing {3000, 1} over {4000, .8} and, as shown by the arrow in FIG 1, choosing 

{4000, .20} over {3000, .25}. Then, they are presented with the two-stage framing of the same 

problem (FIG 2)18, and allowed time to critically analyze their choice.  

Fig 1:19    Fig 2: 

Observing that given the choice, they prefer {4000, .20} over {3000, .25}, the subject would 

choose the down path in figure 1. In order to stay consistent with this choice over final wealth 

distributions, the subject’s planned choice in Fig 2, made before the first chance node is resolved,

would be to go down, since this would produce the ‘preferred’ distribution of final outcomes, 

{4000, .20}.

However, upon reaching the decision node in figure 2, a large part of the uncertainty has been 

resolved, and the subject is confronted with a decision between {3000, 1} and {4000, .8}. 

Because they prefer the former, they choose to go up, as indicated by the arrow. Thus, the 

subject’s actual choice is inconsistent with their planned choice. This inconsistency is termed 

dynamic inconsistency. Any direct violation of the independence axiom can be framed in this 

way, so that anyone violating the axiom is dynamically inconsistent in this specific context.20 

17 This problem is borrowed from Kahneman & Tversky (1979)
18 Figure 1 and 2 have identical distributions over final wealth, and therefore represent the same choice
19 Fig. 1 and 2 borrowed directly from Kahneman & Tversky (1979). The squares in each tree represent a decision 
node, and the circles represent random chance events.
20 Note that dynamic consistency is a more general term that refers to any scenario in which current preferences 
contradict past preferences
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The subject now has two choices. The subject can choose to resolve this issue of dynamic 

inconsistency, in which case he must change one of the two preference orderings involved in this

choice so that his choices are consistent with Expected Utility axioms. If this is the case, then the

failure of Expected Utility in this problem is rooted in perceptual biases.

Alternatively, he can accept that he is dynamically inconsistent, in which case he retains his non-

expected utility preference ordering. If this is the case, then the failure of Expected Utility to 

describe the subject’s behavior is rooted in the non-linearity of probabilities. 

Conscious Acceptance of Dynamic Inconsistency21

Consciously accepting that one is dynamically inconsistent has some particularly concerning 

implications. Dynamic inconsistency implies information aversion. The subject in the above 

example preferred {4000, .20} over {3000, .25} and planned to go down at the choice node in 

figure 2. However, the free information that the subject received from the first chance node in 

figure 2 caused the subject to deviate from their planned choice and settle for the less preferred 

lottery {3000, .25}. Therefore, if one truly preferred the final wealth distribution resulting from 

choosing {4000, .20} over {3000, .25}, it would be in one’s best interest to reject free 

information! 

That one might be consciously information averse is alarming, if not nonsensical. An assumption

of information seeking, the idea that reliable information should never hurt a decision maker, 

seems very attractive and highly “rational”. In fact, the information seeking assumption could 

effectively replace the independence axiom in the development of Expected Utility theory.22 

Thus, the conscious acceptance of dynamic inconsistency and therefore information aversion 

calls into question not only the descriptive validity of Expected Utility, but also its normative 

validity. Indeed, it would be very difficult to argue that the conscious choice leading to a non-

linearity failure, made after all comprehending all available information and arguments, is 

irrational. 

21 The word conscious is used to refer to the comprehension of all available and relevant information 
22 Logically: ‘not independence axiom’ implies ‘dynamically inconsistent’ implies ‘information averse’, therefore 
‘information seeking’ implies ‘dynamically consistent’ implies ‘independence axiom’
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4. The Normative Debate

The various empirical failures of Expected Utility theory suggest that it may not be suitable for 

descriptive purposes. Indeed, these failures have led to the formulation of several Non-Expected 

Utility models. These models do not assume linearity in probabilities (the independence axiom), 

and more accurately describe human behavior in certain scenarios. Non-Expected Utility models 

include Prospect Theory, Subjective Expected Utility, and Subjectively Weighted Utility, among 

others.23 

Although these models were made specifically for descriptive purposes, the question of whether 

or not these models might be valid for prescriptive purposes is still open to debate. In fact, there 

is still debate with regards to the normative validity of Expected Utility. For example, Machina 

(1989) makes the argument that consequentialism is an implicit assumption of Expected Utility. 

Consequentialism means that unrealized past possibilities have no influence on the value of 

current states, or as Machina puts it, “whenever a choice in a decision tree is reached the part of 

the tree before the current choice node is ‘snipped’ off”. Some thought reveals that 

consequentialism is essentially equivalent to the independence axiom24, and that people who are 

not consequentialist over the stated outcomes are actually considering outcomes beyond the 

current outcome space. In other words, the xi defined in the lottery (see page 2) are ambiguous 

and do not describe all dimensions of the relevant outcomes. Interestingly enough, rational 

people who behave as non-Expected Utility maximizers over one outcome space might behave as

Expected Utility maximizers over another outcome space, and vice versa. 

The Outcome Space Argument

An example given by Machina (1989) against consequentialism involves “Mom” and her two 

children, Abigail and Benjamin. She has an indivisible treat, which she can choose to give to 

either Abigail (lottery A) or Benjamin (lottery B). Mom strictly prefers A or B to not giving 

either child the treat. However, she doesn’t want to play favorites, and strictly prefers to flip a 

coin for a 50:50 chance of either A or B. She prefers this 50-50 flip to any other mixture of 

probabilities since it is the fairest.

Benjamin, having been exposed to the dynamic consistency argument, decides to impose 

consequentialism on Mom. He gets Mom to write down that she prefers a flip to either A or B, 

and if he loses the flip (the coin lands on A), he shows her the paper so that instead of giving the 

23 See Kahneman & Tversky (1979), Savage (1954), and Karmarkar (1978, 1979) respectively
24 And therefore also equivalent to dynamic consistency and information seeking
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treat to Abigail, Mom decides to ignore past uncertainty and do another flip. By repeating this, 

Benjamin ensures that lottery B is chosen, and he gets the treat. 

Clearly, it would not make sense for Mom to flip the coin twice, as this would produce a 

different distribution over final outcomes and be dynamically inconsistent with her initial choice 

to flip once. Mom rejects consequentialism, and does not flip the coin twice. To any onlooker, 

Mom’s behavior is perfectly rational. Her preferences {A, .5; B, .5} > {A, 1}, {B, 1} make 

sense, and so does her rejection of Benjamin’s proposal for another flip. However, even her 

initial preference ranking, as stated, outright contradicts the independence axiom. Has Expected 

Utility failed normatively, and is Mom a non-Expected Utility user? 

The point to be made here is that the possible outcomes (A: Abigail receives treat; B: Benjamin 

receives treat) are ambiguous; they do not fully describe the relevant outcomes. Mom prefers {A,

.5; B, .5} to A or B because she doesn’t want to play favorites. In other words, she is considering 

“playing favorites” as a relevant dimension of the potential outcomes. The relevant outcome 

space is therefore (A1: Abigail receives treat, Mom plays favorites; A2: Abigail receives treat, 

Mom is fair; B1: Benjamin receives treat, Mom plays favorites; B2: Benjamin receives treat, 

Mom is fair). By expanding the outcome space, we eliminate all ambiguity in outcomes, and the 

independence axiom holds. Her preference ranking becomes {A2, .5; B2, .5} > {A1, 1}, {B1, 1}, 

and Benjamin’s strategy can no longer be used, since the second flip with be a choice between 

{A2, 1} and {A1, .5; B1, .5}, not {A1, 1} and {A2, .5; B2, .5}. Over the relevant outcome space, 

Mom is behaving consistently with consequentialism and the independence axiom. 

In cases of dynamic inconsistency and non-linearity failures of Expected Utility, an analogous 

outcome space argument can be made. By broadening the outcome space and considering all 

relevant outcomes, violations of the independence axiom can be resolved. Recall the isolation 

effect example:

Fig 1:25    Fig 2: 

Here the possible outcomes are all $-values, and the stated outcome space is dollars. If an 

individual behaves in a dynamically inconsistent manner (by choosing the red arrows), they are 

25 Fig. 1 and 2 borrowed directly from Kahneman & Tversky (1979). The squares in each tree represent a decision 
node, and the circles represent random chance events.
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violating the independence axiom. However, this discrepancy can be easily resolved by 

expanding the outcome space to include the dimension of resolved risk, which the individual 

considers relevant to the decision. In figure 1, the individual is choosing between wealth 

distributions that are risky, whereas in figure 2, much of the risk has already been resolved. 

While it is true that the risk of the wealth distribution is the same before the first node of either 

tree, the resolved risk at the decision point might change the outcomes from the perspective of 

the decision maker. In figure 1, the possible outcomes are (0: it probably would’ve happened 

anyways; 3000: if I got this lucky I’d probably have gotten 4000; 4000: lucky!). In figure 2, the 

possible outcomes of the decision are (0: could have been 3000 richer!; 3000: good thing I didn’t

risk it; 4000: lucky!). The ‘free’ information discussed previously is no longer free – it makes the

final outcomes less attractive. 

Drawbacks of the Outcome Space Argument

The outcome space argument just discussed seems very attractive at first glance; it provides a 

simple, yet powerful, defense for Expected Utility on both normative and descriptive fronts. 

However, there are two critical drawbacks to the argument that cannot be ignored. 

First, expanding the outcome space to include all relevant outcomes is difficult and can quickly 

become too cumbersome for any application. For Mom, the second dimension of the outcome 

space (Mom’s fairness) was binary. Either she was fair, or she wasn’t. In this particular example, 

measuring other dimensions was easy, but this is not always the case. In the isolation effect 

example, the second dimension of resolved risk was highly subjective. While it is easy to 

measure $-values, it is very difficult to quantify resolved risk. “It probably would’ve happened 

anyways” is not specific, and it is unclear how such a statement can be valued. Creating a VNM 

Utility function that included this dimension would be nigh-impossible. In some cases the 

relevant outcome space might include several dimensions, making the application of Expected 

Utility far too cumbersome. 

Second, while expanding the outcome space to include dimensions of feeling or emotion might 

allow Expected Utility to serve in descriptive contexts, it is unclear as to whether or not the 

added dimensions are rationally relevant. Should outcomes such as “lucky!” and “could have 

been 3000 richer!” be considered in normative contexts? This is a worthwhile topic for 

philosophical debate, and depending on the context either side might be correct. 
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Relevant Outcomes for Financial Applications

For strictly financial applications of Expected Utility, one might say that money is the only 

rationally relevant outcome. Non-human rational agents, in particular corporations, should not be

subject to emotions. Although a recent trend towards sustainability and the triple bottom line has 

expanded the relevant outcome space for some corporations, generating cash has always been the

most important objective in business. 26 

Individual investors would be well-advised to leave their emotions and any other non-monetary 

aspects out of their financial decision-making. By considering more than just financial 

objectives, investors might find their wealth growing at a less than optimal rate. Of course, it is 

not easy to ignore all non-monetary factors (exemplified by the descriptive failures of Expected 

Utility), and so many investors choose to trust their wealth with an investment advisor. In this 

case, the investor is not the decision-maker, and only financial outcomes are relevant. 

It should also be interesting to note that if investments are carried out in such a way that 

decisions are not in accordance with Expected Utility over the strictly monetary outcome space, 

opportunities for arbitrage may surface. This is beyond the scope of this paper, and a few 

arguments showing how arbitrage might occur can be found in Machina (1989). 

If we consider money to be the only relevant outcome for financial applications, then it follows 

that Expected Utility theory should be the only valid prescriptive model. If it were not, this 

would mean that investors and corporations should be information averse and dynamically 

inconsistent over the monetary outcome space. However, as demonstrated above, this means that 

they are considering at least some non-monetary dimension of the outcomes– a contradiction. 27  

26 The “triple bottom line” expands on the traditional “bottom line”, profit, by adding in the dimensions of 
ecological and social performance
27 It is important to note that although it can generally be ignored by discounting future cash flows to their present 
value, the timing of cash flows might also be considered a relevant dimension of the outcome space. In most cases,
a two dimensional function of money (x dollars) and time (t years) can easily be defined as V(x, t) = U(xe-rt) where U 
is the VNM utility function over current cash, and r is the continuous compounded annual rate of return.
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5. Proper Prescriptive Usage of Expected Utility

The acceptance and use of Expected Utility as a prescriptive model is widespread in a variety of 

financial applications, including both Investment Theory, and Corporate Finance. In order for 

optimal financial decision making, it is in the best interests of the decision maker to use 

Expected Utility theory properly. However, the failures of Expected Utility as a descriptive 

model cross over and create significant challenges to proper usage in prescriptive applications.

Mean-variance Preferences as they relate to Expected Utility

The decision-making model generally used to evaluate portfolios is not actually Expected Utility,

but rather based on Mean-Variance (MV) preferences. MV theory was developed in the 50s and 

60s by Markowitz (1952), Tobin (1958), and Sharpe (1964), among others.28 The use of MV 

preferences is fundamental in Markowitz’s Modern Portfolio Theory, which is commonly applied

in investment scenarios. 

MV theory is accepted for the purposes of Modern Portfolio Theory as a general approximation 

to Expected Utility theory, and used in its stead for its simplicity. In the words of Morone (2008),

MV theory “is the simplest model of investment that is sufficiently rich to be directly useful in 

applied problems … it is, also, rather obvious that Expected Utility should perform better than 

Mean Variance.”29 

Levy and Markowitz (1979) and Kroll, Levy, and Markowitz (1984) demonstrated empirically 

that MV preferences and Expected Utility preferences produce nearly identical choices among 

different sets of portfolios. The VNM utility functions examined in these studies include the 

logarithmic utility function, U(x) = ln(x), among others. It was found that unless investors have, 

as Levy and Markowitz (1979) write, “some very strange preferences among probabilities of 

return”, the correlation between their Expected Utility preferences and MV preferences is nearly 

perfect. For example, the MV approximation of logarithmic utility produces a .995 correlation.30 

Note that in these studies, MV preferences were found by approximating various VNM utility 

functions. Therefore, to properly apply MV preferences, either one must know what subject’s 

VNM utility function is, or one must obtain their MV preferences directly. The latter option is 

subject to the same challenges as the former, which will now be discussed.

28 As referenced in Morone (2008)
29 Morone (2008)
30 Levy and Markowitz (1979)
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Challenges in Determining U( · ) 

Consider how one would go about constructing a VNM utility function for themselves, for a 

client, or for a subject. A common treatment is an elicitation or recovery, which would generally 

involve obtaining some information about the subject’s preferences and matching this 

information to a utility function.31 

Take for example the fractile method, which can be used to construct a subject’s utility curve for 

a given wealth range, say 0 to W. The method first assigns U(0) = 0, and U(W) = 1. It then 

proceeds by arbitrarily selecting some mixture probability p and using it to determine wealth 

values, wi, so that U(w1) = p, U(w2) = p2, and so on. For example, say W = 100 and we use p = 

0.5. Then, to find w1 so that U(w1) = 0.5, we elicit the subject’s certainty equivalent of {100, 0.5; 

0, 0.5}.32 This can be done in a number of ways, including direct elicitation or questioning. Since

U({100, 0.5; 0, 0.5}) = 0.5U(0) + 0.5U(100) = 0.5, U(w1) = 0.5. This process is repeated for 

other mixtures lotteries involving p, and the subject’s ‘recovered’ VNM utility function from 0 to

W is found.33 

What is important to note here is that determining the wealth values wi involves eliciting the 

certainty equivalents of various mixture lotteries from subjects, which a process that is heavily 

influenced by the descriptive failures of the independence axiom. Thus the validity of the elicited

VNM utility function will be highly questionable. Indeed, various researches cited by Machina 

(1987) including Karmarkar (1974, 1978) and McCord have found that using a different value 

for p will elicit a different VNM utility function! As seen below, higher values of p generally 

produce functions with greater concavity (risk aversion).34 

Fig 3:35  

31 Machina (1987), pg 124
32 The certainty equivalent of a lottery is the largest certain amount a subject would pay to ‘buy’ the lottery, or 
alternatively, the smallest certain amount for which they would ‘sell’ the lottery
33 Machina (1987, pg 124
34 Machina (1987), pg 131 - 132
35 Fig. 3 borrowed directly from Machina (1987) pg. 131
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This is not an isolated failure of the fractile method, but will extend to any elicitation method that

involves obtaining non-expected utility information from subjects and using it to create an 

expected utility function. 

Without knowing the subject’s VNM utility function one cannot prescriptively apply Expected 

Utility theory, and evidently, elicitation methods can’t help. So is proper prescriptive usage of 

Expected Utility a hopeless case? A rather interesting detour into the world of professional 

gambling says otherwise. 

A Trip to the Poker Table

The game of poker and its countless variants is a fascinating arena for the analysis and 

application of Expected Utility theory. The variety of poker players provides an excellent mix of 

non-expected utility users. Some have overly risk-averse preferences, while others have overly 

risk-seeking preferences. Some repeatedly make the same stochastically dominated36 choices, 

while others play almost entirely randomly. Some play the game professionally, and they come 

extremely close to being Expected Utility maximizers. Because of the psychological barriers of 

intuition and emotion, as well as the limits on our cognitive ability to reason, nobody plays the 

game optimally. That is – nobody is a perfect Expected Utility maximizer. 

However, the fact that optimal play is equivalent to maximizing one’s Expected Utility37, 

combined with the fact that optimal play can be analyzed through other means, provides a 

context in which Expected Utility theory can be analyzed in and of itself. The really interesting 

thing about this is that poker is not played in the monetary outcome space, but rather monetary 

outcomes result from game factors, most notably the exchange of table chips. Whenever 

outcomes in the relevant space (real dollars) are derived from an acting space (table chips), we 

have an outcome space transformation. If the VNM utility function over the relevant space is 

known, a VNM utility over the acting space can be derived.38 

The general treatment of optimal poker play is to maximize expected value (EV) of real dollars. 

Note that this is consistent with the idea that over modest stake sizes, Expected Utility 

maximizers will maximize their EV (as concluded in the section on calibration failure on pg. 8). 

Thus, given the relevant function, U($) = $, and the rules of the game, one can find the acting 

function, U’(chips). 

36 A lottery is said to stochastically dominate another if it can be obtained from it by shifting probabilities from 
lower outcomes to higher ones. For example, {10, .5} dominates {10, .4} since .1 of the probability of receiving 0 in 
the second, can be shifted to a .1 probability of receiving 10 to obtain {10, .5}
37 This is assumed, not proven; consider the examples given as evidence
38 Again this is not proven; in fact, I am not sure it is always true, but it can be done in the examples given
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In most cash games U’(chips) = chips, and optimal play consists of maximizing the expected 

value of one’s chips, or table wealth. 39 However, unique aspects of the game might cause 

U’(chips) to deviate considerably from expected value. 

Here is one example of such a scenario: 

I was sitting at a table with one of the largest fish40 I had ever played against. He was 

making huge –EV decisions in nearly half of every hand dealt to him. To this point he had

gotten insanely lucky; he had won several 20% lotteries, and was sitting with more than 5

times his initial buy-in. At this particular table, my strategy deviated considerably from 

maximizing EV. Here are 2 examples:

When I was sitting with my initial buy-in, I entered into a –EV lottery with the fish. My 

expert assessment at the time was that my EV was about –10% of a buy-in.

Later on, after having won some money, I was sitting with 4 times my initial buy-in. I 

gave up a lottery against the fish, which in my expert assessment at the time had about a 

65% chance of netting me 3 buy-ins and about a 35% chance of losing me 4 buy-ins. 

Thus, I knowingly gave up a lottery with an EV of about 0.55 buy-ins – a very substantial

sum, and perhaps the largest EV I have ever knowingly given up.

My seemingly irrational behavior can be explained by examining the characteristics of the game 

and constructing U’(chips) given U($) = $. It was obvious that the fish was either going to leave 

the table or lose all his money, and so I was competing not only against the other players, but 

also against time. The opportunities for winning a large hand against the fish were running out 

fast, and so it would be in my best interest to have as many chips at the table as the fish – this 

way, I could take all of his money in a single hand, rather than having to beat him several times. 

However, the maximum one can buy-in to the table for limited, and the fish had more than 5 

times this amount. It would be in my best interest to try and increase my table wealth as fast as 

possible, and since I could always re-buy if I ran out of chips, the optimal play was to be risk-

seeking for small values of table wealth. 

At higher values of table wealth, the opposite is true. Having the ability to win all or most of the 

fish’s money in a single hand, it was in my best interest to wait until my odds were good enough 

39 Cash games refer to games where the buy-in is cash, players bet and therefore win/lose cash in every hand, and 
players can join or leave the game at any time. This contrasts with tournament play, where a certain number of 
players pay cash for chips, and play until they are eliminated or win the tournament. The payoff structure in 
tournaments is determined before play starts. 
40 A fish is a common term for a poor player from who other players profit; a large fish is a fish who is so bad that he
might be termed ‘free money’
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to risk losing all of my chips. If I had lost all my chips, it would have been difficult to rebuild my

table wealth and it is likely that the fish would leave or go broke by the time I did. It was 

therefore optimal to be risk-averse at larger values of table wealth.

Consider a possible graphing of U’(chips) below. The difference between the red line (Absolute 

Utility) and the blue line (Table Wealth) is equal to the amount of money I would pay to be 

sitting at the table with that much wealth. For the graphing I assumed this was equal to 40% of 

my effective wealth versus the fish.41 Note that the effective wealth used when my table wealth is

less than 1 is equal to 1, because if my table wealth drops below 1, I can (and it is assumed that I 

do) always add additional money up to a table wealth of 1. 
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The green line represents my adjusted utility under the assumption that if my table wealth rises 

above 1, the fish’s table wealth drops by an equal amount. In other words, I assume all money 

won is won from the fish, and that if my table wealth rises, the fish’s table wealth falls. 42 
41 Effective wealth refers to the shared wealth between me and the fish, or equivalently the minimum of my table 
wealth and fish’s table wealth (assumed to be 5.5 buy-ins). The assumption that added utility = 40% of effective 
wealth is arbitrary. The added utility could be precisely identified through more complex mathematics, but this is 
beyond the scope of this discussion. 
42 This assumption is required in order to make gains in table wealth unambiguous and 1-dimensional. The real 
outcome space at the table has 6 dimensions, one for each player’s table wealth. This therefore also assumes that 
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Therefore the effective wealth and added utility of sitting with the fish begins to fall if my table 

wealth rises above 2.75 (since this implies the fish’s table wealth is now less than 2.75).  This 

adjusted utility curve is my U’(chips). 

Notice two things about U’(chips). It is convex or risk-seeking for small wealth amounts, and 

concave or risk-averse for larger wealth amounts. Consider my decision to turn down the lottery 

{3, .65; -4, .35}. This lottery, would have an expected utility of 0.65*U(0) + 0.35*U(7) = 4.69, 

which was less than my expected utility of not taking the lottery, or U(4) = 5. This shows that my

seemingly irrational behavior was actually consistent with Expected Utility preferences. 

In this scenario we were able to construct an objective VNM utility curve in the acting outcome 

space based solely on understand how acting outcomes (table wealth) materialized into relevant 

outcomes (real dollars), and knowledge of the relevant VNM utility function. Because the 

relevant VNM utility function was assumed, quite fairly, to be U($) = $, no elicitation of (biased)

preferences was required in this construction. This suggests that objective VNM utility curves 

might be constructed for financial applications by assuming a VNM utility function over a 

relevant outcome space.

Objective VNM Utility Curves for Financial Applications 

In the poker example, the relevant U(x) was known because outcomes were sufficiently small in 

comparison to total wealth. However, this is not always the case, and so one might consider other

possible relevant U(x) functions. The chosen function should closely match one’s strategic 

objectives over the relevant outcome space. 

Consider a company operating as a going concern43 whose only strategic objective was to 

maximize the long-run compounded annual growth rate (CAGR) of their assets or wealth. It has 

been shown that they should make decisions that maximize the geometric mean of outcomes. 

This is equivalent to them having logarithmic VNM utility preferences, U(x) = ln(x).44 Similarly, 

any subject whose single strategic objective was long-run wealth maximization should have 

logarithmic utility, and this can explain why U(x) = ln(x) is “the most common and oldest utility 

function in the economist’s toolkit”.45 

the table wealth of each of the other four players remains constant. This is a fair assumption given the 
circumstances, since I was virtually ignoring other players, and they were virtually ignoring me (we only cared 
about playing hands vs. the fish). 
43 A company that uses an infinite timeframe
44 I need to find a proper reference for this.
45 Moshe A. Milevsky (2009)
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A very important observation in the poker example is that the optimal strategy (rational behavior)

was risk-seeking for at least some decisions. This outright contradicts the assumption of risk-

aversion, which is commonly perceived by economists to require no explanation46, and is critical 

in certain applications of Expected Utility theory. A well-known agency cost of debt 

demonstrates another scenario where risk-seeking is optimal.  

The goal of a publicly-traded company is to 

maximize shareholder returns. This is equivalent 

to maximizing the value of the equity, and because

shareholders can diversify away individual 

company risk, U(equity) is the risk-neutral 

expected value function. The acting outcome space

of the company is not equity however, but its 

enterprise value (EV). The company has debt 

obligations which it must pay before equity, which when combined with the limited liability 

of equity, produce U’(EV) = MAX(EV – debt, 0). If debt = 1000, this produces the function 

to the right. The extreme risk-seeking behavior over relatively low enterprise values is an 

agency cost of debt known as the over-investment problem.47 

For example, if the company’s management was to choose between {1000, 1} and {0, .9; 

2000, .1} it would choose the latter since it maximizes U’(EV). The debt-holders bear the 

cost of this risk-seeking behavior, and the shareholders would benefit. 

Relating Individual Risk Preferences to Consumption

Up to this point, the relevant outcome space has been monetary; however, it might be useful to 

think of money as the acting outcome space. If one equates the utility of money with the value it 

provides, one might want to consider the relevant outcome space as their consumption 

opportunities. That is, an individual’s VNM utility function over money might be derived from 

their consumption goals. The outcome space consisting of all potential consumption 

opportunities is large and very difficult to measure, and this makes it almost impossible to apply 

Expected Utility directly to consumption. However, by making a set of simplifying assumptions 

about an individual’s consumption patterns and goals, it is not only possible to construct a VNM 

utility curve over their finances, but it may be far more ‘correct’ than an elicitation, or any other 

method that does not consider consumption needs. Indeed, the process of eliciting preferences 

46 Footnote 3 of Rabin (2000)
47 It is an ‘agency’ cost, because the company, the agent, in trying to maximize shareholder value is assuming risk-
seeking behavior that is beneficial for shareholders, but a cost for debtholders, the principals. 
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over consumption would not be subject to the same perceptual biases as that of eliciting 

preferences over lotteries. 

As an example, pretend that Bob was given a brief questionnaire about his consumption 

preferences. The utility function of his savings was assumed, and the utility of each consumption 

item was found through elicitation with respect to his savings (at what point would he buy each 

item, and in which order would he buy the items?). The following information was elicited:

- He wants to rent an apartment (as opposed to living with his parents), $1200, U = 4

- He would like to buy a car, $500, U = 2

- He wants to save some money, U($x saved) = ln(5 + x) - 2

Now, assuming that Bob consumes in such a way that maximizes his utility, we can construct 

Bob’s VNM utility curve in the acting outcome space. With $0, he will not be able to consume 

anything. If he has $575, buying a car will outweigh the extra $500 in savings. If Bob has $1325,

paying rent is more valuable that any combination of savings and buying a car. Once he has more

than $1775, he will be able to comfortable pay for rent and buy a car. Graphing Bob’s utility at 

each $25 interval of wealth produces the following curve:
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By making assumptions about how the acting space (money) impacts the relevant space 

(consumption), we were able to construct a VNM utility function over the acting space for Bob. 

Notice that Bob is risk-seeking over certain ranges of money – he is willing to gamble so that he 

may have a car or apartment immediately. 

Although this approach seems like it might work if used properly, the drawbacks are plentiful. 

First, certain consumption opportunities and preferences change very quickly. In fact, the act of 
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consumption itself will cause preferences over consumption to change. Changing income and 

debt capacity would also cause preferences to change. Even the oversimplified curve constructed

for Bob would likely become obsolete very quickly. Second, eliciting consumption preferences 

has its own challenges. Although not subject to same perceptual biases as the elicitation of 

preferences over lotteries, there is no reason to believe that elicited consumption preferences will

be equivalent to actual consumption preferences. Finding consumption preferences for wealth 

levels outside of a person’s current wealth bracket would be highly subjective and very likely 

erroneous. 

There is one saving grace to this idea however: retirement planning. Eliciting preferences over 

consumption in retirement might be less prone to error than elicitation of current preferences. 

Furthermore, future wealth is well defined, in that the retirement fund will be sole provider of 

income and debt capacity can be reasonably estimated (as opposed to Bob’s case, in which it is 

unclear what his future income and debt capacity is). Finally, future consumption preferences are

bound to be relatively stable, even over long periods of time. The VNM curve constructed for 

future wealth at retirement would not need to be constantly revised, as would likely be the case 

for Bob’s utility function.

By eliciting a client’s consumption preferences in retirement, a personal financial planner would 

be able to construct the client’s VNM utility function, and manage the client’s finances in such a 

way that maximizes their future utility. Using such a method for determining the asset allocation 

of a retirement fund would be far more accurate than trying to elicit a client’s preferences 

without any reference to their consumption preferences.

6. Concluding Remarks & Further Investigation

The theory of Expected Utility is one of the oldest and most important discoveries in the field of 

decision-making under uncertainty.  It lies at the core of several widely used financial models, 

and is used for a variety other prescriptive purposes. Despite the theory’s numerous descriptive 

failures, its normative validity given a well defined and relevant outcome space is undeniable. 

Nevertheless, proper prescriptive application of Expected Utility is fraught with obstacles; the 

relevant outcome space may be difficult to quantify and may have many dimensions, and the 

descriptive failures of Expected Utility make direct and accurate elicitation of VNM utility 

curves from subjects a hopeless endeavor. 

There are several scenarios in which VNM utility curves might be objectively constructed rather 

than elicited, and if one hopes to apply Expected Utility properly in a normative context every 

effort must be made to do so. The construction of VNM utility curves over acting outcome 
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spaces by considering relevant outcomes and strategic objectives will not always be easy, but it is

far preferable to relying on the interpretation of potentially irrational elicited input. Mean-

variance preferences, which have been shown to be highly correlated with Expected Utility 

preferences, must be treated in a similar fashion. 

The treatment of deriving VNM curves over acting outcome spaces was only briefly touched on, 

and it is likely that much progress could be made in this area. Some ideas worth further 

investigation:

- Are there scenarios, other than the ones mentioned, in which one knows precisely what 

U(x) is over the relevant outcome space? 

- In the discussion the overinvestment problem, U(x) was assumed to be risk-neutral. U(x) 

was really just the aggregate of the utility functions of each shareholder. It would be 

interesting to observe how an aggregate of two or more utility functions is formed, and 

what the implications of this are. In Markowitz’s MPT, each investor uses his preferences

to pick an asset allocation, so that the aggregate asset allocation is determined by the 

weighted average of individual asset allocations. This has some deep implications of the 

overall asset allocation of the market, and the implied aggregate U(x). The market should,

in theory, behave as the corporation trying to maximize its long-run CAGR. U(x) should 

therefore be ln(x), but it is unlikely that the implied aggregate U(x) is ln(x). I hypothesize

that arbitrage opportunities do exist in this area, but are well hidden. 

- Deriving U(x) from consumption preferences seems like a very attractive idea, yet it is 

burdened by some nasty drawbacks. It would be interesting to see what kind of work can 

be done on this, and how this kind of construction performs empirically. 

- Is there a mathematically precise way to do the kind of outcome space and VNM curve 

‘transformation’ that was done when going from the relevant space to the acting space? 

Can such a transformation always be made, and will Expected Utility always be valid in 

the acting space?

The topic of decision-making under uncertainty is certainly deep, and considering how critical its

role in our global economy and everyday lives is, it is a wonder that it remains concealed within 

the depths of academia. Financial education for practitioners skips over the basic assumptions of 

the models, and it is unlikely that many practitioners, including the reader’s own personal 

financial planner, truly understand the limitations and potential pitfalls involved.
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