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Abstract
The status quo for objective function design in
reinforcement learning (RL) is to use the value
function of a Markov decision process (MDP).
But this prescribes RL agents with an additive
utility function, which is not obviously suitable
for general purpose use. This paper presents a
minimal axiomatic framework for rationality in
sequential decision making and shows that the im-
plied cardinal utility function is of a more general
form than the discounted additive utility function
of an MDP. In particular, our framework allows
for a state-action dependent “discount” factor that
is not constrained to be less than 1 (so long as
there is eventual long run discounting). We show
that although the MDP is not sufficiently expres-
sive to model all rational preference structures (as
defined by our framework), there exists a unique
“optimizing MDP” whose optimal value function
matches the utility of the optimal policy. The
relation between the value and utility of subopti-
mal policies is quantified and the implications for
objective function design in RL are discussed.

1. Introduction
Should we seek to use reinforcement learning (RL) as a
foundation for developing general purpose agents, it be-
hooves us to ensure that its framework is theoretically able
to represent, or at least approximate, any “rational” set of
preferences. The concept of rationality is not uncontrover-
sial, and one could simply define rational preferences to
be those representable by the value function of a Markov
decision process (MDP). Indeed, this is the predominant
approach for objective function design in RL (Sutton &
Barto, 2018). Though this “MDP status quo” may be suit-
able for specific tasks with well-defined objectives (e.g.,
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many games), it is unclear that it is suitable in general. For
example, Christiano et al. (2017) propose to model human
preferences using an MDP—does this make sense?

This paper challenges the MDP status quo by presenting a
minimal axiomatic framework for rationality in sequential
decision making and showing that the implied cardinal util-
ity function has a more general form than the value function
of an MDP. After a motivating example in Section 2 and
a discussion of related work in Section 3, we proceed in
Section 4 to develop our framework and analyse the value
function as an approximate model of utility. Our analysis
suggests that a single MDP cannot model certain prefer-
ence structures, and that we should be thinking about ways
to coordinate the use of multiple MDPs. This and other
implications of our work are discussed in Section 5.

2. Motivation
To motivate our work, we show how additive utility may
fail using a simple “Cliff Example”. Consider an agent that
is to walk in a single direction on the side of a cliff forever.
Along the cliff are three parallel paths. The agent assigns
cardinal1 utilities of 100, 0 and 50 to walking along the low,
middle and high paths, respectively (Figure 1 (left) a-c). Let
us also suppose the agent has the option to jump down one
level at a time from a higher path, but is unable to climb
back up. Thus the agent has many options. Four of them are
shown in Figure 1 (left) d-g with their associated utilities.

At a glance, there does not appear to be anything irrational
about the utility assignments. But try as we might, we
cannot force this utility structure into a 3-state discounted
MDP with infinite time horizon. To see this, consider that
for the Bellman equation to be satisfied with respect to
the optimal policy, paths c-g in Figure 1 (left) imply the
reward values shown in Figure 1 (right) when one assumes
a discount factor γ of 0.9. This implies that the utilities
of paths a and b are -30 and -20, respectively. Not only
is this incorrect, but the order is reversed! This is true for
all γ ∈ [0, 1) (a simple proof of this fact is found in the
Supplement). It follows that either the utility assignments

1Cardinal (as opposed to ordinal) means that relative differ-
ences in utility values indicate degree of preference.
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Figure 1. Utilities over paths in Cliff Example (left); MDP implied by optimal policy when γ = 0.9 (right).

are irrational, or the MDP structure used is inadequate.

3. Related work
Koopmans (1960) provided the first axiomatic development
of discounted additive utility over time. This and several
follow-up works are summarized and expanded upon by
Koopmans (1972) and Meyer (1976). The applicability of
these and other existing discounted additive utility frame-
works to general purpose RL is limited in several respects.
For instance, as remarked by Sobel (2013), most axiomatic
justifications for discounting have assumed deterministic
outcomes, and only a handful of analyses address stochas-
ticity (Meyer, 1976; Epstein, 1983; Sobel, 2013). Naively
packaging deterministic outcome streams into arbitrary lot-
teries (as suggested by Meyer (1976), §9.3) is difficult to
interpret in case of control (see our commentary in Sub-
section 4.2 on the resolution of intra-trajectory uncertainty)
and entirely hypothetical since the agent never makes such
choices—compare our (slightly) less hypothetical “original
position” approach in Subsection 4.4.

Existing frameworks have also typically been formulated
with a focus on future streams of consumption or income,
which has led to assumptions that do not necessarily ap-
ply to sequential decision making. When each unit in a
stream is assumed to be scalar, this already rules out “cer-
tain types of intertemporal complementarity” (Diamond,
1965). This type of complementarity is also ruled out by
mutual independence assumptions (Koopmans, 1972) in
frameworks admitting vector-valued units (see commentary
of Meyer (1976), §9.4, and Frederick et al. (2002), §3.3).
Even seemingly innocuous assumptions like bounded utility
over deterministic outcome streams have important conse-
quences. For instance, Meyer (1976) and Epstein (1983)
derive similar utility representations as our Theorem 3, but
use their assumption that utility over outcome streams is
bounded to conclude that the discount factor is always less
than or equal to 1 (see the discussions following equation
9.22 in the former and equation 17 in the latter). By con-

trast, our framework admits the possibility of a state-action
dependent “discount” factor greater than 1, so long as there
is eventual long run discounting—thus, specific, measure
zero trajectories may have unbounded reward but the utility
of a stochastic process that might produce such trajectories
will still exist. This is illustrated in the Supplement.

Frederick et al. (2002) provides a comprehensive empirical
review of the discounted additive utility model as it pertains
to human behavior and concludes it “has little empirical sup-
port.” While this is consistent with our normative position,
it does not invalidate discounting, as humans are known to
exhibit regular violations of rationality (Tversky & Kahne-
man, 1986). Such violations are not surprising, but rather a
necessary result of bounded rationality (Simon, 1972). Our
work is in a similar vein to Russell (2014) in that it argues
that this boundedness necessitates new research directions.

Several papers in economics—including Kreps (1977) (and
sequels), Jaquette (1976) (and prequels), Porteus (1975)
(and sequel)—examine sequential decision processes that
do not use an additive utility model. Of particular relevance
to our work are Von Neumann & Morgenstern (1953), Kreps
& Porteus (1978) and Sobel (1975), on which our axiomatic
framework is based. To the authors’ knowledge, no study,
including this one, has ever provided a direct axiomatic
justification of the MDP as a model for general rationality.
This is not so surprising given that the MDP has traditionally
been viewed as a task-specific model. For example, the
MDP in Bellman’s classic study (1957) arose “in connection
with an equipment replacement problem”.

The reinforcement learning problem, framed generally, in-
volves an agent learning to interact “optimally” with a par-
tially known environment (Sutton & Barto, 2018). The most
common model for this problem is the MDP, and it is often
assumed that human preferences can be well represented
by the reward and value functions of an MDP (Abbeel &
Ng, 2004; Christiano et al., 2017). To the authors’ knowl-
edge, the best (indeed, only) theoretical justification for this
assumption is found in Ng & Russell (2000). Its connec-
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tion to our work is discussed in Subsection 4.7. Further
connections to the RL literature are discussed in Section 5.

4. Theory
4.1. Preliminaries

Our basic environment is a sequential decision process
(SDP) with infinite time horizon, formally defined as the tu-
ple (S,A, T, T0) where S is the state space, A is the action
space, T : S×A→ L(S) is the transition function mapping
state-action pairs to lotteries (i.e., probability distributions
with finite support) over next states—the set of which is
denoted L(S) and has generic element s̃—and T0 ∈ L(S)
is the distribution from which initial state s0 is chosen.

A trajectory is an infinite sequence of states and actions,
(st, at, st+1, at+1, . . . ). For each non-negative integer t,
yt ∈ Yt denotes the history from time t = 0 through the
state at time t; e.g., (s0, a0, s1, a1, s2) ∈ Y2. yt[i] indexes
the i-th state in yt; e.g., (s0, a0, s1, a1, s2)[2] = s2.

A (stochastic) stationary policy π : S → L(A) (or ω
when a second generic is needed) maps states to lotter-
ies over actions. A non-stationary policy from time t,
Πt = (πt, πt+1 | yt+1, πt+2 | yt+2, . . . ) (or just Π, or Ω
when a second generic is needed) is a conditional sequence
of stationary policies where the choice of πt may depend on
yt. Π[i] indexes Π’s i-th element (e.g., Πt[1] = πt+1 | yt+1),
Π[i:] denotes (Π[i], Π[i+1], . . . ). Π(s) is shorthand for
Π[0](s). Note that stationary policy π may be viewed as
the non-stationary policy (π, π, . . . ). The space of all non-
stationary policies is denoted Π.

A Markov decision process (MDP) is an SDP together with
a tuple (R, γ), where R : S × A → R returns a bounded
scalar reward for each transition and γ ∈ [0, 1) is a discount
factor. For a given MDP, we define the value function for a
policy Π, V Π : S → R, as V Π(st) = E[

∑∞
t=0 γ

tR(st, at)].
Further, we define the Q-function for Π, QΠ : S ×A→ R
as Q(s, a) = V aΠ(s), where aΠ = (π,Π[0],Π[1], . . . ) is
the non-stationary policy that uses generic policy π with
π(s) = a in the first step and follows policy Π thereafter.
Note that V aΠ is well-defined regardless of π(z) for z 6= s.

4.2. Preferences over prospects

We would like to apply the machinery of expected utility
theory (Von Neumann & Morgenstern, 1953) to preferences
over the set of possible futures, or “prospects”, P , and
more generally, lotteries on prospects, L(P). Some care is
required in defining a prospect so as to satisfy the necessary
axioms. In particular, we would like (strict) preference to
be asymmetric, meaning that between any two prospects
p, q ∈ P , at most one of p � q or q � p holds, where �
denotes strict preference (for convenience, we also define

weak preference p � q as not q � p, and indifference p ∼ q
as p � q and q � p). Without additional assumptions, bare
trajectories and policies both fail to satisfy asymmetry.

Suppose that preferences were defined over bare trajectories
(or segments thereof), as in “preference-based RL” (Wirth
et al., 2017). One problem with this is that intra-trajectory
uncertainty has already been resolved; e.g., to evaluate a
trajectory that risked, but did not realize, a visit to a difficult
region of the state space, one must make an assumption
about how the agent would have behaved in that region.
More generally, it is unclear whether trajectories should be
compared with respect to action quality (what could have
happened) or with respect to outcomes (what did happen).

Suppose instead that preferences were defined over bare
policies. This is still problematic because preference would
depend on the current state distribution (not just T0). To see
this take an SDP with disconnected state trees S1 and S2,
where π1 � π2 in S1 but π2 � π1 in S2.

To avoid such difficulties, we define a prospect as a pair
(s,Π), where s ∈ S and Π is an arbitrary non-stationary
policy, which represents the stochastic process that results
when the agent starts in state s and behaves according to Π
thereafter. For this definition to work we need the following
assumption, in absence of which different histories leading
up to the initial state s could result in preference reversal:

Assumption (Markov preference, MP). Preferences over
prospects are independent of time t and history yt.

One might justify MP in several ways. First, trivially, one
may restrict the scope of inquiry to time t = 0. Second, theo-
retically, it is a consequence of certain preference structures
(e.g., the structure associated with the standard optimality
criteria for MDPs). Third, practically, one can view MP as
a constraint on agent design. Typical RL agents, like the
DQN agent of Mnih et al. (2013) are restricted in this way.
Finally, constructively, MP may be achieved by using an
“internal” SDP that is derived from the environment SDP, as
shown in Subsection 4.3. The DRQN agent of Hausknecht
& Stone (2015), which augments the DQN agent with a
recurrent connection, implements such a construction.

As compared to trajectories, all uncertainty in prospects
is left unresolved, which makes them comparable to the
“temporal lotteries” of Kreps & Porteus (1978). As a result,
it is admittedly difficult to express empirical preference
over prospects. Indeed, within the bounds of an SDP, an
agent only ever chooses between prospects originating in the
same state. In Subsection 4.4, however, we will apply a “veil
of ignorance” argument (Rawls, 2009) to enable a general
comparison between prospects for normative purposes.
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4.3. Constructive Markov preference (MP)

In this section we derive an “internal” SDP from an envi-
ronment SDP, (S,A, T, T0), so that Markov preference is
satisfied with respect to the internal SDP. First, define a his-
torical prospect to be a pair (yt,Πt) where yt ∈ ∪tYt and
Πt is the policy to be followed when starting in the final state
of yt. One should have little trouble accepting asymmetry
with respect to preferences over historical prospects.

Next, define an equivalence relation on the set of all histories
as follows: yi, yj ∈ ∪tYt are equivalent if the last states
are equal, yi[i] = yj[j], and, for all Π1 and Π2, (yi,Π

1
i ) �

(yi,Π
2
i ) ⇐⇒ (yj ,Π

1
j ) � (yj ,Π

2
j ). Let S′ be the set of

equivalence classes with generic element s′ = {yt}. Note
that S′ may be uncountable even if S is finite.

It follows from our construction that preferences over the
prospects (s′,Π), where s′ ∈ S′ and Π is an arbitrary non-
stationary policy, are independent of time t and history
yt. Therefore, the constructed SDP, (S′, A, T ′, T0), where
T ′(s′, a) := T (yt[t], a), satisfies Markov preference.

4.4. Cardinal utility over prospects

We imagine a hypothetical state from which an agent
chooses between lotteries (i.e., probability distributions with
finite support) of prospects, denoted by L(P). Let us call
this state the “original position” and say that the choice
is being made from behind the “veil of ignorance”, after
Rawls (2009). In our case, this is not entirely hypothetical:
the agent’s designer, from whom preferences are derived,
is faced with a similar choice problem. The designer can
theoretically instantiate the agent’s internal state, which en-
capsulates the agent’s subjective belief about the history,
to be anything (albeit, the external world state is generally
outside the designer’s control). Now there may be some
uncertainty about which internal hardware states correspond
to which histories, so that the designer is, in a sense, behind
a veil of ignorance.

We assume that strict preference (�) with respect to arbitrary
prospect lotteries p̃, q̃, r̃ ∈ L(P) satisfies the following four
axioms of static rationality:

Axiom 1 (Asymmetry). If p̃ � q̃, then not q̃ � p̃.

Axiom 2 (Negative transitivity). If not p̃ � q̃, and not q̃ � r̃,
then not p̃ � r̃.

Axiom 3 (Independence). If α ∈ (0, 1] and p̃ � q̃, then
Mα(p̃, r̃) �Mα(q̃, r̃).

Axiom 4 (Continuity). If p̃ � q̃ � r̃, then ∃ α, β ∈ (0, 1)
such that Mα(p̃, r̃) � q̃ �Mβ(p̃, r̃).

The notationMα(x, y) represents the mixture αx+(1−α)y.
Mixtures of prospect lotteries are themselves prospect lotter-
ies, where Mα(p̃, q̃) represents an α% chance of lottery p̃

and a (1−α)% chance of lottery q̃. Note that every prospect
is a (degenerate) prospect lottery.

We may now apply Theorem 5.15 of Kreps (1988), restated
here without proof and with minor contextual modifications:

Theorem 1 (Expected utility theorem). The binary relation
� defined on the set L(P) satisfies Axioms 1-4 if and only if
there exists a function U : P → R such that, ∀ p̃, q̃ ∈ L(P):

p̃ � q̃ ⇐⇒
∑
z

p̃(z)U(z) >
∑
z

q̃(z)U(z)

where the two sums in the display are over all z ∈ P in the
respective supports of p̃ and q̃. Moreover, another function
U ′ gives this representation if and only if U ′ is a positive
affine transformation of U .

Applying the theorem produces the cardinal utility function
U : P → R, as desired. We overload notation and define
U : L(P)→ R as U(p̃) =

∑
z p̃(z)U(z). This gives us the

corollary (cf. equation 5.13 of Kreps (1988)):

Corollary (Mixture of prospects). For p̃, q̃ ∈ L(P) and
α ∈ [0, 1], U(Mα(p̃, q̃)) = Mα(U(p̃), U(q̃)).

We further define UΠ : S → R as UΠ(s) = U((s,Π)) =
U(s,Π) for policy Π. Similarly, we overload UΠ to de-
fine UΠ : S × A → R as UΠ(s, a) = U(s, aΠ), where
aΠ = (π,Π[0],Π[1], . . . ) is the non-stationary policy that
uses generic policy π with π(s) = a in the first step and
follows policy Π thereafter. Implicit in this definition is the
irrelevance of unrealizable actions axiom proposed below.

Finally, given a lottery over states, s̃ ∈ L(S), we denote
the prospect lottery given by s̃ with fixed Π as (s̃,Π), and
define preference ordering �s̃ over policies induced by s̃
according to the rule Π �s̃ Ω if and only if U(s̃,Π) =∑
z s̃(z)U

Π(z) >
∑
z s̃(z)U

Ω(z) = U(s̃,Ω). We further
define the shorthand U s̃ : Π→ R as U s̃(Π) = U(s̃,Π).

4.5. Rational planning

The axioms of static rationality are classics of decision
theory and have been debated extensively over the years (see
footnote 1 of Machina (1989) for some initial references).
Other than asymmetry, which is natural given MP, we do not
wish to argue for their merits. The main point of this paper—
that the MDP framework may not be sufficiently versatile
to represent all rational preference structures—would stand
even if the axioms were weakened, for that would broaden
the range of rational preference structures; indeed, the MDP
optimality criteria implies the axioms (see Theorem 5).

Rather than weaken this foundation, it is prudent to
strengthen it for the sequential context. Without strong
normative assumptions about the structure of preferences,
such as those implied by the standard optimality criteria of
MDPs, one can infer very little about future behavior from
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past behavior and learning would be impossible; see, e.g.,
the “No Free Lunch” theorem for inverse reinforcement
learning (Armstrong & Mindermann, 2017). The axioms
and results in this subsection, provide a minimal charac-
terization of rational planning, thereby permitting a more
detailed discussion of “rationality” and allowing us to better
understand the role of the MDP framework. We begin with:

Axiom 5 (Irrelevance of unrealizable actions). If the
stochastic processes generated by following policies Π and
Ω from initial state s are identical, then the agent is indiffer-
ent between prospects (s,Π) and (s,Ω).

A consequence of this axiom is that the aΠ notation intro-
duced in the previous subsection is sensible: U(s, aΠ) is
constant for all policies π with π(s) = a.

Assuming non-trivial MP, an agent will choose between
prospects of the form (s2,Π2) at time t = 2, where s2 ∼
T (s1, a1) and Π2 is any non-stationary policy. The agent
has preferences over plans for this choice at t = 1, which
can be ascertained by restricting the t = 1 choice set to the
set X of prospects of the form (s1, a1Π). From a rational
agent, we should demand that the restriction of U to X ,
U |X : Π→ R, represent the same preference ordering over
policies as UT (s1,a1). We thus assume:

Axiom 6 (Dynamic consistency). (s, aΠ) � (s, aΩ) if and
only if (T (s, a),Π) � (T (s, a),Ω).

Dynamic consistency is based on the similar axioms of
Sobel (1975) and Kreps & Porteus (1978), reflects the gen-
eral notion of dynamic consistency discussed by Machina
(1989), and might be compared to Koopmans’ classic “sta-
tionarity” axiom (1960). Note that we demand consistency
only before and after an action has been chosen, but not
before and after environmental uncertainty is resolved. That
is, (T (s, a),Π) � (T (s, a),Ω) does not imply that for all z
in the support of T (s, a), (z,Π) � (z,Ω).

Finally, we adopt a mild version of “impatience”, compa-
rable to Sobel’s countable transitivity axiom (1975). Impa-
tience can be understood as the desire to make the finite-term
behaviors and consequences meaningful in light of an infi-
nite time horizon (Koopmans, 1960). In the statement below,
we use ΠnΩ to refer to the policy that follows Π for the first
n steps and Ω thereafter.

Axiom 7 (Horizon continuity). The sequence {U(s,ΠnΩ)}
converges with limit U(s,Π).

One might use this basic setup to prove a number of facts
about rational behavior in SDPs; e.g., Sobel (1975) uses a
similar axiomatic structure to prove a policy improvement
theorem alongside the next result. This would be slightly
orthogonal to our main point, and we restrict our analysis
to three immediately relevant results. The first justifies our
later focus on stationary policies. An optimal policy is a

policy Π for which (s,Π) � (s,Ω) for all s and Ω.
Lemma 1. If Π is an optimal policy, so too is the policy
Π1Π = (Π[0],Π[0],Π[1],Π[2], . . . ) formed by delaying Π
one step in order to act according to Π[0] for that step.

Proof. Consider any state s. For each state z in the sup-
port of Π(s), (z,Π) � (z,Π[1:]) (because Π is optimal)
so that (T (s,Π(s)),Π) � (T (s,Π(s)),Π[1:]). By dynamic
consistency, this implies (s,Π1Π) � (s,Π).

Theorem 2. If there exists an optimal policy Π, there exists
an optimal stationary policy π.

Proof. Put π = Π[0]. By repeated application of Lemma 1
we have πnΠ � Π for all n > 0. It follows from horizon
continuity that π � Π.

The next result is somewhat similar Lemma 4 of Kreps
& Porteus (1978), but with a recursive, affine formulation.
Note that the proof does not use horizon continuity.
Theorem 3 (Bellman relation for SDPs). There exist R :
S ×A→ R and Γ : S ×A→ R+ such that for all s, a,Π,

U(s, aΠ) = R(s, a) + Γ(s, a)Es′∼T (s,a)[U(s′,Π)].

Proof. Fix s and a. Dynamic consistency ensures that
UT (s,a) = Es′∼T (s,a)[U(s′,Π)] represents the same pref-
erences as the restriction of U to the space X of prospects
of the form (s, aΠ). Preferences are cardinal because Π
may be stochastic, so that prospects in X are prospect lot-
teries (i.e., X ⊂ L(P)), X is closed under mixtures (i.e.,
p̃, q̃ ∈ X =⇒ Mα(p̃, q̃) ∈ X , ∀α ∈ [0, 1]), and the
axioms of static rationality apply to prospect lotteries in
X . Therefore, by the restriction of Theorem 1 to X , U |X
and UT (s,a) are related by the positive affine transformation
U |X = α + βUT (s,a) for some α ∈ R, β ∈ R+. Define
R(s, a) = α, Γ(s, a) = β. Since s and a were arbitrary, the
result follows.

The final result of this subsection, which builds upon The-
orem 3, will be used to prove the value-utility relation of
Subsection 4.8. Suppose |S| is finite, and define vectors
uΠ and rπ so that their ith components equal U(si,Π) and
R(si, π(si)), respectively. Further define diagonal matrix
Γπ whose ith diagonal entry is Γ(si, π(si)) and transition
matrix Tπ whose ijth entry is T (si, π(si))(sj). We have:
Theorem 4 (Generalized successor representation). For
finite |S|, limn→∞(ΓπTπ)n = 0, so that the matrix
(I− ΓπTπ)−1 = I + (ΓT)1 + (ΓT)2 + . . . is invertible.

Proof. Using aΠ = πnω in the vector form of Theorem 3,
and expanding the recursion n− 1 steps gives:

uπnω = rπ + ΓπTπuπn−1ω

= rπ(I + (ΓT)1 + · · · + (ΓT)n−1) + (ΓT)nuω
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where the superscripts on Γπ and Tπ were dropped for
convenience. Similarly, using aΠ = π, we have:

uπ = rπ(I + (ΓT)1 + · · · + (ΓT)n−1) + (ΓT)nuπ.

Subtracting the second from the first gives uπnω − uπ =
(ΓπTπ)n(uω − uπ). By horizon continuity, the left side
goes to 0 as n → ∞ for all π and ω. We’ve made no
assumptions about the action space or ω, and can augment
any MDP with more actions so that uω (and hence (uω −
uπ)) is arbitrary without affecting uπ, rπ,Γπ and Tπ. It
follows that (ΓπTπ)n → 0.

That (I− ΓπTπ) is invertible follows from the well known
matrix identity (Kemeny & Snell (1976) §1.11.1).

4.6. Preference structure of MDPs

The value function of an MDP induces preferences over
L(P) when treated as a utility function on P; i.e., ac-
cording to the rule p̃ � q̃ if

∑
(s,Π) p̃((s,Π))V Π(s) >∑

(s,Π) q̃((s,Π))V Π(s) where the two sums are over the
respective supports of p̃ and q̃. We have that:

Theorem 5. Preferences induced by the discounted additive
value function of an MDP satisfy Axioms 1-7.

Proof. Axioms 1-4 follow from the necessity part of Theo-
rem 1. Axioms 5 and 6 are obvious. Axiom 7 is true because
bounded R and γ < 1 imply that the total contribution of
rewards received after n steps goes to 0 as n→∞ so that
V ΠnΩ(s)→ V Π(s).

Corollary. Theorem 2 applies to MDPs (this is well known;
see, e.g., Theorem 6.2.9(b) of Puterman (2014)).

What we would have wanted is for the discounted additive
preference structure of MDPs to follow from the axioms.
Unfortunately, the representation of Theorem 3 is the closest
we can get; it is not hard to see that the utilities in the Cliff
Example of Section 2 are also consistent with the axioms
(this is illustrated in the Supplement).

It follows that Axioms 1-7 allow for more diverse prefer-
ence structures than those induced by the value function
of an MDP. If these axioms are a good characterization of
rational planning, then this is problematic, because it seems
inconsistent with the common assumption that arbitrarily
complex preferences and behaviors can be represented using
the MDP framework (Abbeel & Ng, 2004; Christiano et al.,
2017). Nevertheless, the results of the next two subsections
show that the MDP remains a useful tool in general settings.

4.7. The optimizing MDP

In this subsection we prove the existence of an MDP whose
optimal value function equals the optimal utility function.

As a preliminary step, let us restate without proof a classic
result for MDPs (e.g., Theorem 6.2.6 of Puterman (2014)):

Lemma 2 (Bellman optimality). Given an MDP, policy π
is optimal with respect to V if and only if, ∀s ∈ S,

V π(s) = arg max
a∈A

(R(s, a) + γE[V π(s′)]).

We also define U∗ = Uπ
∗
, V ∗ = V π

∗
and Q∗ = Qπ

∗
, and

recall that U is overloaded for domains S and S ×A.

Theorem 6 (Existence of optimizing MDP). Given an SDP
with cardinal utility U over prospects, and optimal station-
ary policy π∗ with respect to U , for all γ ∈ [0, 1), there
exists a unique “optimizing MDP” that extends the SDP
with discount factor γ and reward function R such that π∗

is optimal with respect to V , and has corresponding optimal
V ∗ = U∗ and Q∗ = U∗.

Proof. Put R(s, a) = U∗(s, a)− γE[U∗(s′)]. Then:

U∗(st) = R(st, π
∗(st)) + γE[U∗(st+1)]

= E

[ ∞∑
t=0

γtR(st, π
∗(st))

]
= V ∗(st)

and:

U∗(s, a) = R(s, a) + γE(V ∗(st+1)) = Q∗(s, a).

Since V ∗(s) = U∗(s, π∗(st)) ≥ U∗(s, a) = Q∗(s, a),
∀a ∈ A, it follows from Lemma 2 that π∗ is optimal with
respect to V . For uniqueness, suppose that V ∗ = U∗

and Q∗ = U∗ are optimal; then by definition of Q∗, we
have U∗(s, a) = R(s, a) + γE[U∗(s′)], so that R(s, a) =
U∗(s, a)− γE[U∗(s′)] as above.

A consequence of Theorem 6 is that the inverse reinforce-
ment learning problem (Ng et al., 2000) is solvable (in
theory); i.e., there exists a reward function that can explain
any “rational” set of behavior as being the solution to an
MDP. This same consequence follows from Theorem 3 of
(Ng et al., 2000), which characterizes the set of reward
functions under which some observed behavior is optimal.
Our theorem differs from that of Ng & Russell in that it
produces a unique solution for completely specified prefer-
ences, whereas the theorem of Ng & Russell produces a set
of solutions for partially specified preferences.

4.8. Relating value to utility

Although V ∗ = U∗ in the optimizing MDP, the Cliff Exam-
ple tells us that, in general, V π 6= Uπ. This is a potentially
serious problem because an agent may never find the opti-
mal policy. Indeed, humans are the only general purpose
agents we know of, and our bounded rationality is well doc-
umented (Simon, 1972; Tversky & Kahneman, 1986). It
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is possible that general purpose objective preferences are
so complex that all intelligent agents—present or future;
human, artificial or alien—are so bounded to suboptimality.

Nevertheless, a natural hypothesis is that the closer V π is
to V ∗—i.e., the better an agent performs in its approximate
model of U—the better off it will tend to be. There is a
sense in which this is true, at least for finite |S|. Recalling
the vector notation defined for Theorem 4, defining vπ

accordingly, noting that u∗ = v∗, and setting επ = Γπ−γI,
we have:
Theorem 7. In the optimizing MDP (for finite |S|) :

uπ = u∗ − (I − ΓπTπ)−1(I − γTπ)(v∗ − vπ)

= vπ − (I − ΓπTπ)−1επTπ(v∗ − vπ).

Proof. The Bellman relation provides four equations:

uπ = rπ + ΓπTπuπ (1)

ua∗ = rπ + ΓπTπu∗ (2)

vπ = rπ + γTπvπ (3)

ua∗ = rπ + γTπv∗ (4)

where rπ is the vector representing R(s, π(s)). The first
equality of the theorem follows by computing (2) - (4) to
obtain an equation for rπ − rπ, substituting the result into
(1) - (3), adding v∗−v∗ (= 0) to one side, and rearranging,
given that (I− ΓπTπ) is invertible by Theorem 4.

The second equality follows after expanding (I−ΓT)−1 =
I + ΓT + (ΓT)2 + · · · = I + (I + ΓT + . . . )ΓT =
I + (I− ΓT)−1ΓT, and writing:

uπ = u∗ − (I + (I − ΓT)−1ΓT)(I − γTπ)(v∗ − vπ)

= vπ − [(I − ΓT)−1Γ − γ(I + (I − ΓT)−1ΓT)]T(v∗ − vπ).

= vπ − [(I − ΓT)−1Γ − (I − ΓT)−1γI]T(v∗ − vπ).

= vπ − (I − ΓπTπ)−1επTπ(v∗ − vπ)

where we again use the identity I + (I − ΓT)−1ΓT =
(I− ΓT)−1 in the third line.

It is worth examining the factors of the product (I −
ΓπTπ)−1επTπ(v∗ − vπ). The final factor (v∗ − vπ) has
non-negative entries and tells us that the difference between
uπ and vπ is a linear function of the agent’s regret in the
optimizing MDP, which supports our hypothesis that better
approximated performance is correlated with better objec-
tive performance. The factors (I− ΓπTπ)−1 and Tπ also
have all non-negative entries (to see this, write the former
as an infinite sum). Thus, if επ = Γπ − γI has mostly
positive entries, vπ will tend to be greater than uπ and the
optimizing MDP will over-estimate utility.

Unfortunately, there is no way to guarantee that επ has all
negative entries, which would guarantee that value estimates
in optimizing MDP are pessimistic, since Γ(s, a) may be
greater than 1 for some (s, a), so long as there is long run
net discounting (see Supplement for an illustration).

It is emphasized that Theorem 7 does not address the prefer-
ence reversal problem observed in the Cliff Example. Even
though u∗ − uπ is related to v∗ − vπ by linear transfor-
mation, the relationship is not monotonic (entry-wise, or
in norm). Preferences over suboptimal prospects implied
by the optimizing MDP’s value function may very well be
reversed. It may be possible to provide a more detailed
bound on regret in terms of Γ, but we have yet to obtain one.

4.9. Further Limitations

Besides the lack of a guaranteed pessimistic MDP and a
bound on regret caused by the preference reversal problem,
our current analysis is limited in several respects. First,
we emphasize that constructive MP (Subsection 4.3) may
result in uncountable |S|, but parts of our analysis assume
finite |S| (e.g., Theorem 7). Along these same lines, our
analysis is limited to lotteries and we have yet to verify that
it generalizes to distributions with uncountable supports.

Second, given our normative focus, we implicitly assumed
the existence of so-called “objective” probabilities in a fully-
observable environment. Along these same lines, our frame-
work relies on preference over abstract prospects and does
not suggest a way for the empirical expression thereof. Fur-
ther work is required to accommodate subjective probability,
partial observability and empirically expressible preference.

5. Discussion
5.1. General reinforcement learning (GRL)

How can we depart from the MDP status quo and create
reinforcement learning agents that are capable of represent-
ing non-MDP preference structures? Our analysis suggests
two possible courses of action. First, one might adopt the
Theorem 3 representation and use an “MDP+Γ” model of
the environment that defines both an external reward signal
R and an external anticipation function Γ. It is possible
that dynamic programming and online reinforcement learn-
ing algorithms can be extended to cover this more general
model whilst still offering convergence guarantees; cf. So-
bel (1975) and Kreps & Porteus (1979). A problem with
this approach is that Γ function design seems to be just as
hard, if not harder, than reward function design.

Second, one might avoid the use of a single monolithic
MDP to model global preferences, and instead think about
ways of coordinating many specialized MDPs. One way
to do so is hierarchical, as in hierarchical reinforcement
learning (HRL). The idea is that it is (or should be) easier
to express accurate preference at the level of goals (i.e.,
without incurring preference reversal between suboptimal
goals) than at the level of fine-grained prospects. So given
a set of goals G, an agent can hierarchically decompose
its preferences into two stages: first pick g ∈ G, and then
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optimize a g-specialized MDP, Mg, to pick fine-grained
actions. Kulkarni et al. (2016) provides an example of how
this might be done. Although the goal-selection mechanism
used by Kulkarni et al. is modeled as an MDP, in principle
it could be modeled as anything (including an MDP+Γ),
thereby freeing the agent from the limitations of the MDP.
Note that all Mgs share world dynamics, so that only R
(and optionally γ) change with g. The value function in each
Mg is a general value function (GVF) (Sutton et al., 2011)
and all GVFs (and therefore Mgs) might be modelled si-
multaneously using a universal value function approximator
(UVFA) (Schaul et al., 2015).

As these approaches allow an agent to represent more gen-
eral preference structures than the standard RL framework,
one might term them general reinforcement learning (GRL).
This is a bit of a misnomer, however, as the reinforcement
learning problem, broadly framed, encompasses GRL.

5.2. Inverse and preference-based RL

Our work leads to a generalization of the inverse reinforce-
ment learning (IRL) question. Rather than asking, “given
the observed behavior, what reward signal, if any, is being
optimized?” (Russell, 1998), our work suggests asking:
given some preferences, whatR and Γ, if any, are consistent
with those preferences? Future work might explore whether
equipping an IRL algorithm with the ability to learn variable
Γ would produce empirical improvements.

Preference-based RL (PBRL) (Wirth et al., 2017) side steps
reward function design by learning directly from human
preferences. Although a wide variety of algorithms fall
under this general umbrella, PBRL “still lacks a coherent
framework” (Wirth et al., 2017). In particular, the object of
preference has varied widely between different algorithms.
For instance, studies in PBRL have seen preferences ex-
pressed over actions given a state (Griffith et al., 2013), over
entire policies (Akrour et al., 2011), over complete trajec-
tories (Wilson et al., 2012), and over partial trajectories
(Christiano et al., 2017). Yet, per the discussion in Subsec-
tion 4.2, none of these objects satisfy the basic requirement
of asymmetry without additional assumptions, which are
not always explicitly stated or analyzed.

Our work is relevant to PBRL in that it proposes a basic
object—the prospect (s,Π)—over which (objective) prefer-
ences are asymmetric (given MP). Our axiomatic framework
falls well short of the coherent foundation sought by Wirth,
however, as there is no obvious way in which preferences
over abstract prospects can be empirically expressed.

Another interesting problem has to do with the impact of
assuming or inferring an MDP preference structure based on
suboptimal preferences. The optimizing MDP of Theorem
6 is designed with respect to V ∗, but what if we were to

use IRL to design an MDP based on expert behavior that is
suboptimal (e.g., because the robotic agent is much more
capable than a human expert)? Similarly, in the PBRL set-
ting, human preferences are queried with respect to objects
that are almost always suboptimal, since preferences are
only queried during learning. Supposing empirical human
preferences are better modeled by an MDP-Γ (are they?),
how does the assumption that they are induced by an MDP
structure (as in, e.g., Christiano et al. (2017)) impact results?

5.3. Generalized successor representation

An interesting connection between the MDP and the MDP-
Γ is that, in both, a policy-specific value function can be
decomposed into the product of “discounted expected future
state occupancies” and rewards. In the finite case, the former
factor is represented by the matrix S = (I − ΓT)−1 (see
Theorem 4), so that v = Sr. When Γ = γ, S is the well
known successor representation (SR) (Dayan, 1993). The
SR is useful for transfer (e.g., when solvingMg for novel
g), has been used to measure the distance between policies
(Abbeel & Ng, 2004) and is essential to our Theorem 7.

What makes the SR interesting here is that it seems to solve
some of the problems posed by the abstract anticipation
function Γ. First, Γ is sensitive to the discretization of time
(for the same reason annual interest rates are larger than
monthly ones). Second, small changes in the average Γ can
result in large changes in value (increasing γ from 0.990 to
0.991 increases the value of a constant positive perpetuity
by over 10%). By contrast, the entries of S—despite its
opaque formula—provide a interpretable and time-scale
invariant measure of causality (Pitis, 2018). Changes in S
impact v in proportion to r, and there is even evidence to
suggest that the humans utilize the SR to cache multi-step
predictions (Momennejad et al., 2017). For these reasons,
it may be easier and more effective to elicit and use values
of S, representing long run accumulations of the Γ function,
than individual values of Γ, whether for GRL, IRL or PBRL.

6. Conclusion
This paper began with the idea that the discounted additive
value function of an MDP may not be sufficiently expressive
to represent all “rational” sets of preference. This was illus-
trated concretely with the Cliff Example. In order to analyse
this, we drew upon certain classic axioms and results of
decision theory to develop an axiomatic framework for ra-
tionality in sequential decision making. This framework
enabled us to prove several interesting results about cardinal
utility over prospects in SDPs and the use of an optimizing
MDP as a model thereof. It revealed the limitations of the
single MDP, and motivated the use of more expressive GRL
architectures, to be explored in future work.
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Figure 2. Extension of Figure 1 to illustrate more paths.

Supplement
In this supplement we use the Cliff Example to illustrate
concretely three claims made in the paper. The path labels
in Figure 2 and the state and state-action labels in Figure 3
are referenced throughout.

Preference reversal occurs for all γ ∈ [0, 1)

This claim is made in Section 2. Given the values of paths
d, e, f and g in Figure 2, we have:

V (g) = R(MM) + γV (e), so that R(MM) = 70 − γ80,

and

V (f) = R(HH) + γV (d), so that R(HH) = 60 − γ70.

It follows that R(MM) > R(HH) for all γ ∈ [0, 1) since
R(MM)−R(HH) = 10− γ10 is positive.

The Cliff Example satisfies Axioms 1-7

This claim is made in Subsection 4.6. The following R
and Γ provide one consistent Theorem 3 representation (not
unique) and imply the following utilities for paths h-k:

(s, a) R(s, a) Γ(s, a)
LL 10 0.9
ML -10 0.9
MM 0 0.875
HM -2 0.9
HH 25 0.5

path U(path)
h 55
i 61.25
j 52.5
k 53.59375

If other paths (not shown) are given utilities consistent with
Theorem 3, and we assume the utility of all lotteries (none
shown) are computed as expected values, Axioms 1-4 and
dynamic consistency hold (by the necessity part of Theo-
rem 1, and by the fact that positive affine transformations
represent the same preferences, respectively). Axiom 5 is
obviously satisfied. Finally, notice that each step that path
d is delayed (paths f, h, j...) brings the utility closer to path
a. Similarly, delaying path e (paths g, i, k...) brings the util-
ity closer to that of path b. This is true in general because
Γ < 1, so that the contribution of future rewards to utility
goes to zero and horizon continuity is satisfied.

Figure 3. SDP representation of Cliff Example.

Γ(s, a) > 1 at some (s, a) is consistent with Axioms 1-7

This claim is made in Section 3 as one of the factors dif-
ferentiating our framework from those of Meyer (1976)
and Epstein (1983). To see that this is possible, suppose
that action HH were stochastic rather than deterministic:
although the agent attempts to stay on the high path, half of
the time the agent trips and slides down to the middle path.
Using the R and Γ shown in the table to the left, but setting
Γ(HH) = 1.2, results in an MDP-Γ that has bounded utility
over prospects and satisfies Axioms 1-7. Even though the
“discounted” reward along path a is unbounded, the agent
almost surely cannot stay on path a, and the expectation of
any policy that tries to stay on path a exists. In particular,
an agent that tries to stay on path a, and resorts to the pol-
icy that follows path e if it trips (call this prospect X), has
utility U(X) = 25 + 1.2(0.5× U(X) + 0.5× 80), so that
U(X) = 182.5, which is finite. Since the utilities of all
prospects exist, the fact that this revised MDP-Γ is consis-
tent with axioms 1-7 follows by an argument similar to that
used for the original Cliff Example.

By contrast, Meyer (1976) and Epstein (1983) assume that
the utility of all paths, including path a, is bounded, from
which it follows that Γ < 1.


