
Methods for Retrieving Alternative Contract Language Using a
Prototype

Silviu Pitis
College of Computing

Georgia Institute of Technology
Atlanta, GA, USA 30332
spitis3@gatech.edu

ABSTRACT
This paper addresses the problem of searching for alternative con-
tract language that is similar to, yet different from, a given provision
(the prototype). While this is a core task in transactional legal work,
generic search solutions do not offer an effective solution. We draw
uponmodern information retrieval research to propose and validate
novel methods for retrieving alternative language using a proto-
type. Our solution accepts an entire provision as a prototype and
retrieves variants on the language from a database of precedent con-
tracts. In designing this solution, we propose two ordered proximity
measures and demonstrate their effectiveness relative to existing
techniques. Further, we examine the challenge posed by varying
definitions of redundant search results and propose to resolve it
with a user-tunable, dynamic approach to result clustering.

CCS CONCEPTS
• Information systems→ Retrieval models and ranking; Retrieval
tasks and goals; Users and interactive retrieval; • Applied comput-
ing → Law;

KEYWORDS
Transactional law, passage retrieval, contract clause retrieval, nov-
elty detection, search result clustering

ACM Reference format:
Silviu Pitis. 2017. Methods for Retrieving Alternative Contract Language
Using a Prototype. In Proceedings of ICAIL ’17, London, United Kingdom,
June 12-16, 2017, 9 pages.
https://doi.org/http://dx.doi.org/10.1145/3086512.3086530

1 INTRODUCTION
Searching for alternative language in a database of documents is
an important and oft-repeated task in the day-to-day practice of
transactional law. For instance, during the drafting and negotiation
of a key contract provision, lawyers on both sidesmight spend hours
researching similar provisions from precedent contracts in order

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICAIL ’17, June 12-16, 2017, London, United Kingdom
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-4891-1/17/06. . . $15.00
https://doi.org/http://dx.doi.org/10.1145/3086512.3086530

to support their negotiating stance or find alternative wordings
that are beneficial to their respective clients. When a lawyer’s
experience and personal collection of past deal documents fail to
produce the required precedent for such a task, the lawyer typically
consults a database of precedent, such as his or her firm’s document
management system.

The status quo for searching such a database, however, is not
a specialized solution. Leading document management systems
typically offer only generic search features that are not effective for
locating alternative contract language.1 For example, if you have
access to such a contract database, you might try searching now for
variations of the following provision (from a Registration Rights
Agreement):

The Company will use its best efforts to confirm
that the rating of the Initial Securities obtained
prior to the initial sale of such Initial Securities
will also apply to the Securities covered by a Reg-
istration Statement.

(A)

Generic search solutions do not return useful results when using
the entire provision as a query. A phrase search retrieves only exact
matches, and a regular search (e.g., ranked retrieval using Okapi
BM25) typically retrieves many irrelevant (and often duplicate)
results. Lawyers might instead resort to querying sub-phrases such
as “confirm that the rating of the Initial Securities”. While this
may ameliorate the problem with full phrase search, it is not ideal.
Crafting such sub-queries is time-consuming, and is still bound to
miss relevant results and produce duplicates.

The contribution of this paper is twofold. First, we have identi-
fied a ubiquitous, yet unaddressed, search problem in the domain
of transactional law, which we hope will spur legal technology
providers to offer tailored solutions. Second, we draw upon mod-
ern information retrieval (IR) research to propose and validate
novel methods for retrieving alternative language using a proto-
type. Our solution accepts an entire provision as a prototype and
retrieves variants on the language from a database of precedent con-
tracts. In designing this solution, we propose two ordered proximity
measures and demonstrate their effectiveness relative to existing
techniques. Further, we examine the challenge posed by varying
definitions of redundant search results and propose to resolve it
with a user-tunable and dynamic approach to result clustering.

We proceed as follows: in Section 2, we provide further mo-
tivation and context for the problem. In Section 3, we describe

1A small subset of providers have begun to recognize the importance of search for
contract language. See, e.g., Lexis for Microsoft Office, Westlaw Sample Agreements
and RealDealDocs, which offer model precedent and clause lookup.

https://doi.org/http://dx.doi.org/10.1145/3086512.3086530
https://doi.org/http://dx.doi.org/10.1145/3086512.3086530

ICAIL ’17, June 12-16, 2017, London, United Kingdom Silviu Pitis

the problem and discuss the aspects that may cause difficulties
when implementing a solution. In Section 4, we outline the past
research upon which we built our proposed solution. In Section 5,
we describe our approaches to ranked retrieval, the data used to
evaluate them, and our empirical results. In Section 6, we describe
our approach to clustering redundant results, and in Section 7, we
conclude.

2 PROBLEM MOTIVATION
2.1 For Drafting and Negotiation
Consider the process of drafting and negotiating an acquisition
agreement involving two parties—a buyer and a seller. The initial
drafting is the responsibility of a single party and typically begins
with a copy of the final agreement from a past transaction, which is
updated to reflect the current negotiation. This update will include
changing the party names, deal-specific changes (to account for
differences in deal structure, tax attributes, company characteristics,
etc.), any tentative agreements reached during preliminary nego-
tiations, and any additional changes the lawyers deem favorable
to their client. Once prepared, the initial draft is communicated
to the other party who, now holding the pen, strikes and replaces
unfavorable language and counters with a redraft. This process
repeats until the parties find a mutually agreeable middle ground
and a final contract is executed.

Repeatedly during this process, the lawyers are faced with a
problem: there is undesirable language that needs to be changed. As
an example all readers can relate to, suppose you are a prospective
tenant and the landlord has proposed a lease with a clause that
allows them to enter the apartment at any timewith or without your
permission. You want to propose a change to this language, but not
being a lawyer who specializes in landlord-tenant law, you’re not
sure what a fair alternative would be (it can’t be that the landlord
is absolutely denied entry at all times). What alternate language do
you propose?

The lawyer’s solution is not usually to craft new language, but
rather to find old language that fits the bill. Many situations, such
as the simple landlord-tenant case just described, are so common
that the experienced lawyer can provide the desired language from
memory, or otherwise immediately dig up the right precedent. But
for other situations, the lawyer is unaware of the relevant precedent.
Thus, a junior lawyer ends up tasked with the following assignment:
“Please locate precedent agreements that have this type of provision
and see how others have dealt with this issue.”

2.2 For Administration and Due Diligence
A firm that contracts with many similar parties will often need
to deviate from its form agreement. For example, a commercial
landlord might enter into hundreds of slightly different leases in
order to accommodate the unique needs of its lessees, or a private
equity fund might enter into hundreds of slightly different side
agreements in order to accommodate the unique needs of each
investor. For various administrative reasons it is often useful to
know which such contracts contain a specific version of a given
provision, or howmany legally distinct versions of a given provision
there are. In some cases, e.g., in satisfaction of amost favored nations

clause2 or due diligence request, there may be a legal obligation to
procure such knowledge. Even in the absence of such obligation,
the failure to find a relevant variant on a provision, e.g., during due
diligence, could still result in a bad business outcome.

3 PROBLEM DESCRIPTION
In both the drafting and administrative scenarios discussed above,
we would benefit from the ability to retrieve relevant provisions
from a database using only a prototype provision as the query.
Results from such a query should be ranked by similarity to the
prototype, whilst simultaneously avoiding or clustering near dupli-
cates. Consistent with past work involving retrieval of novel results
and search result clustering [7, 36, 43], we divide this task into two
components: a method to retrieve relevant results, and a method
to reorder or cluster the results so as to avoid redundancy and pro-
mote diversity. The transactional law context, however, introduces
nuances in both components.

One important nuance lies in the definition of “relevance”. The
usual meaning has been topical in nature; queries for TREC ad-
hoc tasks, for instance, are formulated from TREC “topics” such
as “law enforcement, dogs” [4]. When retrieving alternate contract
language, there is also a strong structural component to “relevance”.
During a negotiation, lawyers are wary of introducing too much
red ink to an existing draft. If a provision must be changed, light
changes are always preferred—the provision is rarely replaced in
its entirety. For this reason, the retrieval component should involve
some amount of partial or fuzzy phrase detection so as to favor
results with a smaller Levenshtein (edit) distance [22] to the query.

A second nuance lies in the amount and character of duplica-
tion in transactional databases [12]. As discussed in Section 2.1,
new contracts are based on old contracts and often introduce small
tweaks to the language. This results in numerous nearly identical,
yet slightly different, provisions. Important differences are not nec-
essarily lexical; they can be grammatical in nature and can amount
to only a single changed character—an added comma or capitalized
word can change a legal obligation. This immediately suggests that
redundancy measures considering only token-level similarity (e.g.,
[43]) are insufficient. At the same time, an algorithm that does
nothing but filter strict duplicates would be inadequate—most small
changes are irrelevant and a diverse set of results is more useful to
lawyers than a set of passages with only marginal differences. This
is particularly true as the purpose of looking up variations of the
same provision—and the very definition of a redundant result—will
vary from case to case (cf. “dynamic relevance” [3]).

Finally, it is worth emphasizing that the prototype provisions
used as queries may be quite long, containing up to 100 or more
tokens. An effective solution must be capable of handling long
queries efficiently. A conjunctive (AND) query is clearly inappropri-
ate, but a disjunctive (OR) query may be slow to evaluate on larger
databases. Moreover, the nature of legal writing makes it so that
most query terms are extremely common. Consider provision A
quoted in Section 1. If tokenized with a standard list of stop words,
20 out of 22 tokens appear in more than 40% of the contracts in
2A most favored nations (MFN) clause, named for its use in international trade, is
common in, e.g., the private funds sphere. The recipient of MFN privileges is treated
as the “most favored” contracting party, and is entitled to receive benefits from the
grantor that are no worse than the benefits granted to any similarly situated party.

Methods for Retrieving Alternative Contract Language Using a Prototype ICAIL ’17, June 12-16, 2017, London, United Kingdom

our dataset (described in Section 5). Even the rarest token, ‘rating’,
appears in 12% of our contracts (the most common, ‘such’, appears
in a whopping 94% of our contracts). This characteristic of “legalese”
only serves to increase the importance of structural aspects of the
query to relevance.

4 RELEVANT RESEARCH
Our proposal draws upon significant bodies of research for each of
the two components discussed above.

4.1 Ranked Retrieval
Work on passage retrieval [5, 20, 21, 23, 33] has studied the scor-
ing and retrieval of sub-documents (passages), as opposed to usual
document-oriented approaches. Various types of passages have
been explored, including those defined by document structure (e.g.,
sections or paragraphs) [5, 33] and those defined by fixed-length
windows [5, 20]. Passage retrieval is a natural approach when the
desired results are in fact passages, as is the case here—identification
of the most relevant provision in each document will be automatic
if scoring is done by provision. On the downside, this approach
may be more expensive, as an order of magnitude more passages
than documents must be scored. For this reason, it has been sug-
gested that ranked retrieval be divided into two stages: first scoring
documents, and then scoring only those passages within the top-k
documents [5]. This runs the risk of missing certain relevant pas-
sages whose containing document does not rank highly. Passage
retrieval is also not a complete solution: scoring passages with
traditional bag-of-words scoring functions that assume term-wise
independence (as in, e.g., [20, 23]) would ignore the structural com-
ponent of relevance highlighted in Section 3.

A simple yet effective method for capturing the query struc-
ture is to use bigrams or higher order word n-grams instead of
the standard unigram approach [4, 10, 27, 37]. Using bigrams, the
query “net book value” would be tokenized as [‘net book’, ‘book
value’] in addition to (or instead of) the usual unigrams [‘net’, ‘book’,
‘value’]. Since the occurrence of higher order n-grams in documents
is much sparser than the occurrence of individual words, the co-
occurrence of multiple n-grams from a single query is strongly
indicative of a partial phrase match or text reuse [10, 26]. Higher
order n-grams have been used to detect near duplicate documents
in large databases [12, 16], to detect passage-level text reuse [34, 35],
and, in the legal context, to trace the development of legislative
language [41]. One disadvantage of using higher order n-grams is
that it greatly expands the size of the indexed vocabulary,3 which
has led to the development of specialized indexing methods [17].
Another disadvantage is that n-grams are composed of immedi-
ately adjacent terms and cannot accommodate certain “proximate”
matches. For example, one would want a search for “aggregate net
book value” to rank “aggregate book value” higher than “aggregate
net sales”, yet both results share only a single bigram with the
query.

Within the legal domain, Rosso et al. [32] show that n-gram based
re-ranking of retrieved passages can be effective for a number of
tasks, including answering questions about legislation, searching

3E.g., Büttcher et al. [4] report that the 426GB TRECGOV2 collection contains 4.4×107
unique words, but 5.2 × 108 unique bigrams and 2.3 × 109 unique trigrams

a patent database, and retrieving conflicting contract provisions.
By contrast, our work addresses the distinct problem of retrieval
by prototype and investigates the process of ranked retrieval itself
rather an algorithm for re-ranking search results.

A significant body of works examines other methods of modeling
term-wise dependence, with particular focus on the proximity of
query terms within results. While many approaches are probabilis-
tic [25, 28, 44], others are heuristic [14, 31, 39]. The latter group,
which employ ad-hoc structures such as covers or spans (i.e., se-
quences of tokens in a document that “cover” or “span” some set of
query terms) [8, 38], or alternatively, measures of distance between
query terms in scored documents [31, 39], are more relevant to
our work given that we seek to model a precise query structure.
Nevertheless, due to the topical nature of relevance in traditional
IR (as opposed to the structural component that we are interested
in), few researchers have examined order in addition to proximity
(among the few are [2, 28]).

Finally, we note that the structural component to relevance
bridges the gap between topical IR and approximate string match-
ing [29]. For instance, Okazaki and Tsujii [30] describe and imple-
ment SimString, an efficient, open-source algorithm for locating
approximate strings in large datasets. Approximate string matching
generally utilizes a character-level n-gram index [30], and considers
the relevance of results to be solely based on various measures of
string distance (e.g., Levenshtein distance [22]). Character-level
indexing offers more granularity than necessary for the task we
address, while measures of string distance potentially ignore the
topical component of relevance that is still present.

4.2 Novelty Detection and Result Clustering
IR researchers have proposed a variety of methods for introducing
novelty and avoiding redundancy in search results [1, 6, 9, 43],
typically as a follow-up step that re-orders or filters results from
ranked retrieval [36]. By and large, novelty and redundancy have
been treated as “opposite ends of a continuous scale” [1, 43], where
the novelty of a result is defined as the new information it contains
relative to, or its dissimilarity to, higher ranked results [6, 43].

Numerous measures of similarity have been proposed for pur-
poses of novelty detection, including ones based on word count, set
difference, geometric distance, and distributional similarity [1, 43].
One might even use the same similarity measure as used for ranked
retrieval [6]. Measures intended to detect paraphrasing [13, 19],
which include string similarity measures like Levenshtein distance
[22] and n-gram overlap, may also prove useful.

With respect to transactional law specifically, Conrad and Ray-
mond [12] have examined the problem of deduplicating provisions
returned by a search in a contract database. Although the context
of our work overlaps with [12], there are significant differences in
both the core problems addressed and our proposed solutions. We
specifically target searches for variations on a prototype provision,
using that prototype as the query. By contrast, [12] use queries
formed by real users of their database, for which the search intent
is unclear. Indeed, judging by the sample queries provided in [12],
which include “put option” and “sale of collateral”, it is unlikely
that most users were searching for variations on language. This
is further reflected by the definition of a “duplicate” result used in

ICAIL ’17, June 12-16, 2017, London, United Kingdom Silviu Pitis

[12], which states that “two texts are duplications if they retain
much of the same language and are at least 90% similar”. In our
view, such a rigid definition strictly fails for our purposes; as stated
in Section 3 and further expanded upon in Section 6, the definition
of redundancy may shift from search to search, and even a single
character difference can be of interest to a lawyer. For this reason,
our proposed solution, which relies on result clustering, is of a
different character than that of [12].

In recognition of the multidimensional concept of relevance [3],
Clarke et al. [9] distinguish diversity from novelty: diversity refers
to results from different topics, whereas novelty refers to results
that contribute new information about a topic already covered
by higher ranked results. Although result diversity can be treated
by the strategic ordering of a flat result list, as suggested by [9],
work on search result clustering provides a relevant alternative to
the flat list that organizes results into clusters of similar results
[7]. A variety of approaches and algorithms for clustering have
been proposed (see [7] for a detailed survey), wherein clusters have
generally been organized by topic (e.g., [15, 42]). Clustering has
also been examined within the legal domain, but at the document
level (pre-retrieval), which is less relevant to our work [11, 24].

5 METHODS FOR RANKED RETRIEVAL
5.1 Data
To compare and test the various methods proposed in this section,
we have compiled a dataset of 20,236 contracts that were obtained
by crawling the U.S. Securities and Exchange Commission (SEC)
EDGAR database of public company filings. These contracts were
uploaded by companies with public filing obligations under the
Securities Act of 1933 and the Securities Exchange Act of 1934, who
have an obligation to file copies of certain contracts as exhibits to
their public filings. This includes copies of “material” contracts, as
described in Item 601 of Regulation S-K. During our crawl we found
over 1 million (not necessarily unique) contracts. Our chosen subset
consists only of those contracts for which a title was easily extracted
from the main filing they were attached to, and whose title included
one of the terms “merger”, “purchase”, “asset” or “acquisition”.

We created both a unigram and bigram index of the selected
contracts. Contracts retrieved in html format were stripped of the
html markup and converted to plain text before indexing. Tokeniza-
tion involved stripping punctuation, passing the text through a
lowercase filter, removing a standard list of stop words, and, in
the case of the bigram index, applying a Porter stemmer to reduce
bigram sparsity.

5.2 Task
We evaluated the methods by comparing the top 10 search results
for each of 20 tested queries. Queries were chosen to be diverse,
and took the form of a complete or partially complete provision
from a contract within the dataset. Provision A from Section 1 is
one of the shorter queries used, with the average query being 89
words long.

Results were compared by measuring the normalized discounted
cumulative gain (nDCG) [18] of the top 10 results. For purposes
of computing gain vectors, we graded the results according to five
relevance categories:

• returned passage is an exact match (5 points)
• returned passage is a close match; e.g., “best efforts” has

been replaced by “commercially reasonable efforts”, in-
significant clauses have been added or deleted, or similar
minor modifications (4 points)

• returned passage is a partial match or otherwise shares
significant language with the query; e.g., part of the query
is present, significant additional parentheticals or other
contextual elements have been added (3 points)

• returned passage is topically relevant to the query but there
is no significant text reuse (2 points)

• returned passage is irrelevant (0 points)
Results were returned together with the surrounding context (i.e.,
there was no automatic paragraph or section segmentation), and
irrelevant context was ignored when grading the relevance of the
result. Table 1 provides examples of results (without any irrelevant
context) graded at the 4 point, 3 point and 2 point levels in response
to the query consisting of provision A from Section 1.

As this experiment was focused solely on ranked retrieval, we
did not penalize the gain contributions of duplicate results. The kth
slot in each gain vector was discounted by dividing by loд2(1 + k).
The ideal gain vector, for purposes of normalization, was obtained
by sorting the set of all graded results by relevance.

5.3 Methods
In all, we tested four different scoring algorithms, each using both
a unigram index and a bigram index, for a total of eight distinct
approaches to ranked retrieval.

Our baseline scoring algorithm was a standard implementation
of Okapi BM25 (as reported in [4]), evaluated at the document
level. Multiple occurrences of the same term in the query were
treated (here and throughout) as distinct terms. For the reasons
outlined in Section 3, we expected poor results using BM25 on
the unigram index, even though we believe this to be comparable
to the generic search solutions available to transactional lawyers.
As document-level BM25 returns documents and not passages, we
ran an additional passage-level evaluation to find the top ranking
passage in each document for purposes of relevance grading.

Second, we tested passage retrieval on fixed-width windows with
a simplified BM25-like scoring function. The width of the passage
windowwas set at query-time to equal 1.5 times the query length (to
allow for added language mid-passage), and our algorithm allowed
passages to start on arbitrary tokens (see arbitrary passage retrieval
in [20, 21]). To be precise about the scoring function used, given a
query, q, and a passage, p, contained in a document, d , the passage
was scored with the formula:∑

t ∈q
log

(
N

Nt

)
·

2.2ft,p
ft,p + 1.2

(1)

where t is a term in query q, N is the total number of documents
in the collection, Nt is the number of documents containing term
t , and ft,p is the frequency of term t in passage p. This formula
reflects BM25 with parameter k = 1.2 applied at the passage-level,
but using an inverse document frequency (log(N /Nt)) computed
at the document level, which is justified on the basis that we are
only considering the top passage from each document (i.e., we will
never include two passages from the same document in the results).

Methods for Retrieving Alternative Contract Language Using a Prototype ICAIL ’17, June 12-16, 2017, London, United Kingdom

Relevance grade Blackline of result against provision A

4 points The Company will use its bestcommercially reasonable efforts to confirm that the rating of the Initial Securities
obtained prior to the initial sale of such Initial Securities will also apply to the Securities covered by a Registration
Statement.

3 points The Company will use its best efforts (i) if the Securities have been rated prior to the initial sale of such Securities,
to confirm that thesuch ratings of the Initial Securities obtained prior to the initial sale of such Initial Securities will
also apply to the Securities or the New Securities, as the case may be, covered by a Registration Statement; or (ii)

2 points [E]ach of the issuers shall: . . . in the case of a shelf registration, use its reasonable best efforts
to cause the transfer restricted securities covered by the registration statement to be rated with the
appropriate rating agencies, if so requested by the holders of a majority . . .

Table 1: Samples of relevance graded results using provision A as the query

For our third and fourth scoring algorithms, we propose two
novel heuristic measures of proximity, one based on term-wise
distance [31, 39] and the other based on covers [8, 39]. Unlike
prior measures, our proposals explicitly model the order of query
terms so as to maintain the query’s structure. Below, we refer to
the following sample document adapted from [39] to illustrate our
proposed measures:

dsample = t1, t2, t1, t3, t5, t6, t2, t3, t4 (2)

A high score with these measures is strongly suggestive of a
matching passage even when scoring is done at the document-
level, and so we did not evaluate them at the passage-level during
ranking (though this is possible, at the price of some additional
computation). Therefore, as with document-level BM25, we ran an
additional passage-level evaluation to find the top ranking passage
in each document for purposes of relevance grading.

5.3.1 Position-adjusted minimum distance. This measure, in-
spired by Tao and Zhai’s MinDist [39], computes the minimum
position-adjusted distance between pairs of matched query terms.
For a pair of matched query terms, (ti , tj), in a document, d , we
define this measure, δ ((ti , tj),d), as the difference between their
directed minimum distance in the document and their directed dis-
tance in the query. It can be efficiently computed by first adjusting
the positions vector4 of one term by the distance in the query and
then computing the minimum distance as in [39]. The minimum for
each pair of terms is taken across all matched pairs in the document.
For instance, given a query q = t1, t2, t3 and the sample document
(2), the minimum position-adjusted distances between the pairs
(t1, t2), (t1, t3), and (t2, t3) are 0, 1, and 0 respectively.

As the time complexity of computing distances for all pairs of
terms in an n-term query isO(n2) and typical queries might be very
long (see discussion in Section 3), we restrict scoring to terms that
are adjacent in the ordered list of matched terms for a document,
which is O(n). To improve upon the limited usefulness of measur-
ing the position-adjusted distance between pairs of overlapping

4The positions vector of a term within a document lists the positions at which the
term appears in that document. The positions vector of t1 in the sample document (2)
is [1, 3].

bigrams (as adjacent bigrams often are), we expand the definition of
adjacent bigram tokens to include tokens separated by a third token.
Thus, if all terms in the query t1, t2, t1, t3 (which is tokenized as
t1-t2, t2-t1, t1-t3) are matched, the token t1-t2 is considered adjacent
to t1-t3 in addition to the usual t2-t1. Note that our definition of
adjacency allows tokens (both unigram and bigram) to be adjacent
in the list of matched terms without being adjacent in the query.

To turn this distance measure into a document score, we use the
following function (cf. π from [39]):

π (q,d) =
∑

(ti ,tj)∈q
max

(
0,k − δ ((ti , tj),d)

)
(3)

where each (ti , tj) is a pair of query terms that are adjacent in the list
of matched terms and k is a distance threshold. In our experiments
we set k = 3.

Using position-adjusted minimum distance to score documents
indexed with unigrams can be thought of as using “fuzzy” bi-grams;
given a query of “aggregate book value”, the phrase “aggregate
net book value” scores higher than the phrase “book value”, even
though both share the same single bigram with the query. When
used with a bigram index, position-adjusted minimum distance
simulates the effect of using even higher-order fuzzy n-grams.

5.3.2 Maximum ascending m-cover. This measure, inspired by
the cover and span based approaches of [8, 39] (among others),
scores a document based on the size of its maximum ascending
m-cover. We define anm-cover as a span of tokens in a document
that contains or “covers” some a set of m distinct query terms,
with repeat query terms treated as being distinct. An ascendingm-
cover is anm-cover whosem matched query terms are in order of
their appearance in the query. Using this as a measure for ordered
proximity only makes sense if ascendingm-covers are limited to a
certain length (in tokens), which we set to equal twice the query
length. The size of an m-cover, used for scoring and taking the
maximum, refers to the magnitude ofm, and not the cover’s length
in tokens.

For example, given the query t1, t3, t4, the sample document (2)
has five 2-covers, but no 3-covers (the span from positions 3 to 9

ICAIL ’17, June 12-16, 2017, London, United Kingdom Silviu Pitis

Method nDCG

Document-level BM25 (unigram) 0.613 ± 0.106
Document-level BM25 (bigram) 0.953 ± 0.030

Passage retrieval (unigram) 0.929 ± 0.057
Passage retrieval (bigram) 0.990 ± 0.007

Position-adj. min dist. (unigram) 0.950 ± 0.027
Position-adj. min dist. (bigram) 0.989 ± 0.011

Max ascending m-cover (unigram) 0.945 ± 0.034
Max ascending m-cover (bigram) 0.977 ± 0.021

Table 2: nDCG by retrieval method (± 95% confidence)

would be a 3-cover, except that it exceeds the maximumm-cover
length of 2 × 3 = 6).

Our algorithm for computing the maximum ascendingm-cover
merges the positions vectors for n query terms using a min-heap,
and then iterates through the merged positions, keeping track, for
each of then query tokens, the maximum ascendingm-cover ending
in that token within the last s tokens, where s is the maximum
m-cover length in tokens. With respect to n, the merge has time
complexity O(n logn), and the iteration has time complexity O(n2).
As with the computation of position-adjusted minimum distance
for all pairs of query terms, complexity that is polynomial in n is
unacceptable given the long expected query length.

Therefore, instead of computing the maximum ascending m-
cover with respect to all query tokens, we split the tokens into
non-overlapping groups of length not less than k , and sum the
scores from each group. In our case we set k = 5. If дi represents
a group of query terms ti . . . ti+k , and score(дi) is the maximum
ascendingm-cover with respect to the sub-query ti . . . ti+k , then
the score of a document d given the full query q is computed as:

π (q,d) =
∑
дi ∈q

score(дi) (4)

Each group is scored in constant time with respect to n, so that
the grouped scoring algorithm has a total time complexity with
respect to n of O(n). Note that there is no guarantee that grouped
covers will be local to a single passage. On the other hand, if A
and B are phrases, then given the query AB, the grouped approach
will score the document BA higher than would the non-grouped
approach.

5.4 Results
Table 2 shows the mean nDCG of the top 10 results for each of
the 8 methods over the 20 tested queries, together with 95% con-
fidence intervals that were computed using a t distribution. As
expected, document-level BM25 using a unigram index, which we
believe is representative of current generic search tools available to
transactional lawyers, performed very poorly. Every other method
obtained respectable results.

Among methods using a unigram index, position-adjusted mini-
mum distance achieved the best results. Even though it does not
consider the inverse document frequency of terms and is not strictly
local (minimum distances can occur anywhere in a document), it

beat unigram-based passage retrieval (although not by a statisti-
cally significant margin). This reflects the structural component
to relevance discussed in Section 3: while unigram-based passage
retrieval considers proximity of terms, it does not also consider
order.

This structural component of relevance is even more clearly
illustrated by the sizable gap between the performance of a unigram
and bigram index. Applying paired t-tests shows that the gap is
statistically significant for all four methods.

Using a bigram index had the additional benefit of allowing
queries to be executed an order of magnitude faster than with a uni-
gram index. This is due to the relative sparsity of bigrams. Consider
again our comment from Section 3 that 20 out of 22 unigrams in
Provision A appear in more than 40% of the contracts in our dataset.
By contrast, the most common (stemmed) bigram in Provision A
is ‘registr-statement’, which appears in 32% of the contracts in our
dataset. 15 out of 21 bigrams in Provision A appear in less than 10%
of contracts—a welcome change that significantly improves query
time.

We note that using a bigram index alone, as we did for our
tests, may hurt the precision of searches when considering longer
result lists (e.g., precision with respect to the top 100 results). For
example, the 2 point result from Table 1 shares only five bigrams
with the Provision A, three of which are quite common (appearing
about 30% of contracts). For this reason, a mixture of unigram and
bigram models may be best in practice. The faster query time of a
bigram index could still be leveraged by executing and returning
the results of the bigram and unigram searches asynchronously. As
our experiments show that bigram searches produce near-ideal top
search results, the user will not have to wait for the unigram search
to complete in order to start using the results.

On the topic of query efficiency, it is worth noting that while
our implementation of arbitrary passage retrieval had acceptable
query time, it was noticeably slower than other methods. For this
reason, we are tentative about recommending passage retrieval
over position-adjusted minimum distance on a bigram index even
though it performed better (although not by a statistically signifi-
cant margin). A worthwhile compromise might be to adopt a two-
step passage retrieval process as suggested in [5].

6 DYNAMIC RESULT CLUSTERING
Text reuse is so common within transactional law that any ranked
retrieval solution would be incomplete without a discussion about
duplicate results. Even using our relatively small database of 20,236
contracts, the majority of tested queries turned up at least a few
near duplicate results.

In this section, we propose to avoid the difficulties posed by re-
dundant results by introducing a dynamic search result clustering
method that is specifically tailored to our task. Due to the interac-
tive nature of our solution, which provides users with significant
flexibility in organizing search results, an empirical test of its ef-
fectiveness would require a longer term user-focused study. We
leave such an evaluation for future work. We emphasize, however,
that our proposal, is an abstraction of, and can therefore emulate,
traditional redundancy-based filtering of search results. As with

Methods for Retrieving Alternative Contract Language Using a Prototype ICAIL ’17, June 12-16, 2017, London, United Kingdom

Figure 1: Organization of results into major and minor variations

search result clustering generally, our approach should be viewed
as “complementary” to traditional methods [7].

6.1 The Definition of Redundancy
In many cases, lawyers will seek a diverse set of variations on a
provision. As discussed in Section 3, however, near duplicates are
not always redundant, and so filtering out all near duplicates is not
an effective solution. In fact, even exact duplicates might at times
be relevant, as a lawyer may be seeking to determine the number or
types of parties that have agreed to a certain variant of a provision.

This problem is not necessarily unique to the legal field. Several
authors have observed that users have varying requirements. Car-
bonell and Goldstein [6] argue that a “user-tunable” approach to
novelty reordering is best, and Zhang et al. [43] observe that human
assessors sometimes disagree about the very definition of redun-
dancy. This latter observation was also made specifically within the
transactional law domain by Conrad and Raymond [12]. We assert
that redundancy in the legal context is even more dynamic than
that: the definition of redundancy varies not only across lawyers,
but also across situations for the same lawyer.

As a result, any static solution will be suboptimal in at least some
situations. We therefore adopt the suggestion of Carbonell and
Goldstein [6] and propose a user-tunable method. First, however,
we present a static version of our proposal that takes advantage of
search result clustering.

6.2 Major and Minor Variations
Inspired by Clarke et al.’s [9] distinction between diversity and
novelty, our proposal draws a distinction between “major” and
“minor” variations on contract language. For the moment, let us
assume that major and minor variations are well defined, perhaps
by relevance grades 3 and 4 from Section 5.2, respectively. We will
revisit these definitions shortly.

We propose to treat major and minor variations as two separate
dimensions of returned results, as depicted in Figure 1. In effect, we
sidestep the difficulties discussed in Section 6.1 by employing search
result clustering [7]. Rather than use the more traditional approach

of filtering and/or reordering redundant results, ourmethod clusters
the “redundant” results (minor variations) under the “novel” results
(major variations) that they correspond to. Users of our proposed
system are able to step into or out of clusters of minor variations
in real-time.

The key advantage over a flat list is that two conflicting defi-
nitions of redundancy can be simultaneously satisfied. A lawyer
searching for minor variations can easily access them, whereas
a lawyer searching only for major variations can ignore minor
variations altogether.

Note that although the proposed approach is an instance of
search result clustering, the transactional law context once again
introduces an important structural element that makes our proposal
different from prior work: as suggested by the label “variations”,
clusters are similar in language rather than topic.

6.3 User-Tunable Parameters
We now return to the definitions of a major and minor variations,
which we propose be set according to dynamic, user-tunable pa-
rameters.

Formally, if P is the space of provisions, then given p,q ∈ P
and some measure of the difference between two provisions, ∆ :
P× P→ R, which may be asymmetric [19], we make the following
definitions:

• Redundant: q is redundant with respect to p if
∆(p,q) < r , where r ∈ R is the redundancy threshold.

• Major variation: q is a major variation of p if
∆(p,q) ≥ m, wherem ≥ r ,m ∈ R is the major variation
threshold.

• Minor variation: q is a minor variation or p if it is neither
a major variation of p nor redundant with respect to p (i.e.,
r ≤ ∆(p,q) < m).

In line with past work [6, 43], we rank the major axis of the
results such that lower results are novel with respect to all higher
results. Thus, the nth major variation in the result list is a major
variation with respect to all higher ranked major variations. For
this reason, the major axis of results contains only a subset of all
major variations of the original provisions.

Together with each major variation, which serves as the pro-
totype for its cluster, we cluster all of its minor variations. Note
that clusters are soft: the same provision might appear as a minor
variation in two separate clusters.

This flexible setup allows users to tune results in real-time by
adjusting the threshold parameters r andm (cf. λ in [6]). Increasing
r decreases the size of each cluster, leaving the major variation
axis unchanged. Increasing m increases the size of each cluster
and decreases the number of clusters, as the divide between major
variations grows. By setting r =m, users can eliminate the minor
axis and achieve a result identical to traditional redundancy-based
filtering.

A straightforward algorithm can be used for clustering and re-
clustering (when parameters r andm are changed). Given n results
to be sorted intom clusters, the algorithm iterates over the results,
selecting cluster prototypes by comparing each result to all previ-
ously selected cluster prototypes. Assuming constant comparison
time, this iteration has time complexity O(nm). Having selected

ICAIL ’17, June 12-16, 2017, London, United Kingdom Silviu Pitis

cluster prototypes, the other results are each compared to each
prototype for clustering. This latter operation is also O(nm), for a
combined time complexity of O(nm).

6.4 The ∆ Function
With regards to the ∆ function, we argue that functions based
on Levenshtein distance (at the character- and/or word-level) are
preferable to other methods due to their ability to provide inter-
pretable guarantees. As noted in Section 4.2, a variety of measures
might be used, including the measure used during ranked retrieval
(e.g., BM25 at the passage-level). Generally speaking, however, mea-
sures of novelty or redundancy are not easily interpretable. For
example, consider a measure involving the percentage overlap in
term vectors between two passages, which was the primary mea-
sure used in Conrad and Raymond [12]. Although this is one of the
more interpretable measures available, a lawyer exploring a cluster
grouped according to such measure would have only a vague idea
of the cluster’s boundaries. By contrast, if a cluster is determined
according to a Levenshtein distance of 5 characters, this would pro-
vide the lawyer with an easily interpretable guarantee: all passages
within 5 characters of the cluster prototype are included in the
cluster.

This notion of interpretable guarantees is of particular impor-
tance in legal search, and is one of the reasons why the use of
Boolean connectors and proximity operators is still popular among
lawyers despite the advent of powerful free text search [40].

7 CONCLUDING REMARKS
In this paper we examined the problem of finding alternative con-
tract language using a prototype. We identified the characteristics
that make this problem different from traditional IR tasks, and em-
pirically compared several alternative retrieval models. We also
outlined a method for organizing typically numerous, near dupli-
cate results.

We compared four different scoring algorithms, each using both
a unigram index and a bigram index, for a total of eight distinct ap-
proaches to ranked retrieval. Two of the retrieval models, position-
adjusted minimum distance and maximum ascendingm-cover, are
novel measures that extend past work to take the order of query
terms into account. We found that passage retrieval on a bigram
index was the most effective method in terms of retrieval perfor-
mance, but noted that our implementations of comparable methods,
such as position-adjusted minimum distance on a bigram index,
had faster query times. Among methods using a unigram index, the
proposed position-adjusted minimum distance measure achieved
the best retrieval performance.

We observed that search results in contract databases can contain
many near duplicate provisions. Rather than filter or reorder such
near duplicates, we proposed to solve the problem by strategically
organizing the results into major and minor variations. Our pro-
posal is user-tunable and therefore flexible with regards to search
intent, and our proposed use of character- or word-level Leven-
shtein distance for grouping variations provides lawyers using the
system with interpretable guarantees about search results.

Both aspects of ourwork—ranked retrieval and result organization—
leave open important questions that will require attention, either

in practice or in future work. With respect to ranked retrieval, our
inquiry was limited to the top results, and it would be helpful to
run a more involved evaluation that also examines lower ranked
results. With respect to result organization, a user study would
be helpful for determining a set of prototypical use cases, setting
default parameters, and optimizing the interface with regards to
user satisfaction and efficiency.

REFERENCES
[1] James Allan, Courtney Wade, and Alvaro Bolivar. 2003. Retrieval and novelty

detection at the sentence level. In Proceedings of the 26th annual international
ACM SIGIR conference on Research and development in informaion retrieval. ACM,
314–321.

[2] Jing Bai, Yi Chang, Hang Cui, Zhaohui Zheng, Gordon Sun, and Xin Li. 2008.
Investigation of partial query proximity in web search. In Proceedings of the 17th
international conference on World Wide Web. ACM, 1183–1184.

[3] Pia Borlund. 2003. The concept of relevance in IR. Journal of the American Society
for information Science and Technology 54, 10 (2003), 913–925.

[4] Stefan Büttcher, Charles Clarke, and Gordon V Cormack. 2010. Information
Retrieval: Implementing and Evaluating Search Engines. The MIT Press.

[5] James P Callan. 1994. Passage-level evidence in document retrieval. In Pro-
ceedings of the 17th annual international ACM SIGIR conference on Research and
development in information retrieval. Springer-Verlag New York, Inc., 302–310.

[6] Jaime Carbonell and Jade Goldstein. 1998. The use of MMR, diversity-based
reranking for reordering documents and producing summaries. In Proceedings of
the 21st annual international ACM SIGIR conference on Research and development
in information retrieval. ACM, 335–336.

[7] Claudio Carpineto, Stanislaw Osiński, Giovanni Romano, and Dawid Weiss. 2009.
A survey of web clustering engines. ACM Computing Surveys (CSUR) 41, 3 (2009),
17.

[8] Charles LA Clarke, Gordon V Cormack, and Elizabeth A Tudhope. 2000. Rele-
vance ranking for one to three term queries. Information processing & manage-
ment 36, 2 (2000), 291–311.

[9] Charles LA Clarke, Maheedhar Kolla, Gordon V Cormack, Olga Vechtomova,
Azin Ashkan, Stefan Büttcher, and Ian MacKinnon. 2008. Novelty and diversity
in information retrieval evaluation. In Proceedings of the 31st annual international
ACM SIGIR conference on Research and development in information retrieval. ACM,
659–666.

[10] Paul Clough. 2003. Old and new challenges in automatic plagiarism detection.
National Plagiarism Advisory Service (2003). http://scholar.google.com/scholar?
hl=en

[11] Jack G Conrad, Khalid Al-Kofahi, Ying Zhao, and George Karypis. 2005. Effective
document clustering for large heterogeneous law firm collections. In Proceedings
of the 10th international conference on Artificial intelligence and law. ACM, 177–
187.

[12] Jack G Conrad and Edward L Raymond. 2007. Essential Deduplication Functions
for Transactional Databases in Law Firms. In Proceedings of the 11th international
conference on Artificial intelligence and law. 261–270.

[13] Joao Cordeiro, Gael Dias, and Pavel Brazdil. 2007. A metric for paraphrase
detection. In Computing in the Global Information Technology, 2007. ICCGI 2007.
International Multi-Conference on. IEEE, 7–7.

[14] Ronan Cummins and Colm O’Riordan. 2009. Learning in a pairwise term-term
proximity framework for information retrieval. In Proceedings of the 32nd in-
ternational ACM SIGIR conference on Research and development in information
retrieval. ACM, 251–258.

[15] Marti A Hearst and Jan O Pedersen. 1996. Reexamining the cluster hypothesis:
scatter/gather on retrieval results. In Proceedings of the 19th annual international
ACM SIGIR conference on Research and development in information retrieval. ACM,
76–84.

[16] Monika Henzinger. 2006. Finding near-duplicate web pages: a large-scale evalu-
ation of algorithms. In Proceedings of the 29th annual international ACM SIGIR
conference on Research and development in information retrieval. ACM, 284–291.

[17] Samuel Huston, Alistair Moffat, and W Bruce Croft. 2011. Efficient indexing of
repeated n-grams. In Proceedings of the fourth ACM international conference on
Web search and data mining. ACM, 127–136.

[18] Kalervo Järvelin and Jaana Kekäläinen. 2002. Cumulated gain-based evaluation
of IR techniques. ACM Transactions on Information Systems 20, 4 (2002), 422–446.
https://doi.org/10.1145/582415.582418

[19] Cordeiro João, Dias Gaël, and Brazdil Pavel. 2007. New functions for unsupervised
asymmetrical paraphrase detection. Journal of Software 2, 4 (2007), 12–23.

[20] Marcin Kaszkiel and Justin Zobel. 1997. Passage retrieval revisited. ACM SIGIR
Forum 31 (1997), 178–185. https://doi.org/10.1145/278459.258561

[21] Marcin Kaszkiel and Justin Zobel. 2001. Effective ranking with arbitrary passages.
Journal of the American Society for Information Science and Technology 52, 4 (2001),

http://scholar.google.com/scholar?hl=en
http://scholar.google.com/scholar?hl=en
https://doi.org/10.1145/582415.582418
https://doi.org/10.1145/278459.258561

Methods for Retrieving Alternative Contract Language Using a Prototype ICAIL ’17, June 12-16, 2017, London, United Kingdom

344–364.
[22] Vladimir I Levenshtein. 1966. Binary codes capable of correcting deletions,

insertions and reversals. In Soviet physics doklady, Vol. 10. 707.
[23] Xiaoyong Liu and W Bruce Croft. 2002. Passage retrieval based on language

models. In Proceedings of the eleventh international conference on Information and
knowledge management. ACM, 375–382.

[24] Qiang Lu, Jack G Conrad, Khalid Al-Kofahi, and William Keenan. 2011. Legal
document clustering with built-in topic segmentation. In Proceedings of the 20th
ACM international conference on Information and knowledge management. ACM,
383–392.

[25] Yuanhua Lv and ChengXiang Zhai. 2009. Positional language models for infor-
mation retrieval. In Proceedings of the 32nd international ACM SIGIR conference
on Research and development in information retrieval. ACM, 299–306.

[26] Caroline Lyon, Ruth Barrett, and James Malcolm. 2004. A theoretical basis to the
automated detection of copying between texts, and its practical implementation
in the Ferret plagiarism and collusion detector. Plagiarism: Prevention, Practice
and Policies (2004).

[27] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. 2008. In-
troduction to Information Retrieval. Cambridge University Press, New York, NY,
USA.

[28] Donald Metzler and W Bruce Croft. 2005. A Markov random field model for
term dependencies. In Proceedings of the 28th annual international ACM SIGIR
conference on Research and development in information retrieval. ACM, 472–479.

[29] Gonzalo Navarro. 2001. A guided tour to approximate string matching. ACM
computing surveys (CSUR) 33, 1 (2001), 31–88.

[30] Naoaki Okazaki and Jun’ichi Tsujii. 2010. Simple and Efficient Algorithm for
Approximate Dictionary Matching. In Proceedings of the 23rd International Con-
ference on Computational Linguistics (Coling 2010). Beijing, China, 851–859.
http://www.aclweb.org/anthology/C10-1096

[31] Yves Rasolofo and Jacques Savoy. 2003. Term proximity scoring for keyword-
based retrieval systems. In European Conference on Information Retrieval. Springer,
207–218.

[32] Paolo Rosso, Santiago Correa, and Davide Buscaldi. 2011. Passage retrieval
in legal texts. The Journal of Logic and Algebraic Programming 80, 3-5 (2011),
139–153.

[33] Gerard Salton, James Allan, and Chris Buckley. 1993. Approaches to passage
retrieval in full text information systems. In Proceedings of the 16th annual
international ACM SIGIR conference on Research and development in information
retrieval. ACM, 49–58.

[34] Jangwon Seo and W Bruce Croft. 2008. Local text reuse detection. In Proceedings
of the 31st annual international ACM SIGIR conference on Research and development
in information retrieval. ACM, 571–578.

[35] David A Smith, Ryan Cordell, Elizabeth Maddock Dillon, Nick Stramp, and John
Wilkerson. 2014. Detecting and modeling local text reuse. In Proceedings of the
14th ACM/IEEE-CS Joint Conference on Digital Libraries. IEEE Press, 183–192.

[36] Ian Soboroff and Donna Harman. 2005. Novelty detection: the TREC experience.
In Proceedings of the conference on Human Language Technology and Empirical
Methods in Natural Language Processing. Association for Computational Linguis-
tics, 105–112.

[37] Fei Song and W Bruce Croft. 1999. A general language model for information
retrieval. In Proceedings of the eighth international conference on Information and
knowledge management. ACM, 316–321.

[38] Ruihua Song, Michael J Taylor, Ji-RongWen, Hsiao-WuenHon, and Yong Yu. 2008.
Viewing term proximity from a different perspective. In European Conference on
Information Retrieval. Springer, 346–357.

[39] Tao Tao and ChengXiang Zhai. 2007. An exploration of proximity measures in
information retrieval. In Proceedings of the 30th annual international ACM SIGIR
conference on Research and development in information retrieval. ACM, 295–302.

[40] Howard Turtle. 1994. Natural language vs. Boolean query evaluation: A compari-
son of retrieval performance. In Proceedings of the 17th annual international ACM
SIGIR conference on Research and development in information retrieval. Springer-
Verlag New York, Inc., 212–220.

[41] John Wilkerson, David Smith, and Nicholas Stramp. 2015. Tracing the flow of
policy ideas in legislatures: A text reuse approach. American Journal of Political
Science 59, 4 (2015), 943–956.

[42] Oren Zamir and Oren Etzioni. 1999. Grouper: a dynamic clustering interface to
Web search results. Computer Networks 31, 11 (1999), 1361–1374.

[43] Yi Zhang, Jamie Callan, and Thomas Minka. 2002. Novelty and redundancy
detection in adaptive filtering. In Proceedings of the 25th annual international
ACM SIGIR conference on Research and development in information retrieval. ACM,
81–88.

[44] Jinglei Zhao and Yeogirl Yun. 2009. A proximity language model for informa-
tion retrieval. In Proceedings of the 32nd international ACM SIGIR conference on
Research and development in information retrieval. ACM, 291–298.

http://www.aclweb.org/anthology/C10-1096

	Abstract
	1 Introduction
	2 Problem Motivation
	2.1 For Drafting and Negotiation
	2.2 For Administration and Due Diligence

	3 Problem Description
	4 Relevant Research
	4.1 Ranked Retrieval
	4.2 Novelty Detection and Result Clustering

	5 Methods for Ranked Retrieval
	5.1 Data
	5.2 Task
	5.3 Methods
	5.4 Results

	6 Dynamic Result Clustering
	6.1 The Definition of Redundancy
	6.2 Major and Minor Variations
	6.3 User-Tunable Parameters
	6.4 The Function

	7 Concluding Remarks
	References

