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1 The Skip Ladder Environment
The first part of the assignment asks us to come up with two “interesting” MDPs. Because we are 
required to apply value and policy iteration to both, we are (practically speaking) restricted to 
choosing discrete MDPs. But the universe of discrete MDPs can be described with relatively few 
choices: 

• a set of n ≥ 1 states: si for 0 ≤ i < n

• for each state, si, a set of mi ≥ 1 actions: aij for 0 ≤ j < mi

• for each (si, aij) pair, an n-by-mi transition matrix (of probabilities)

• for each (si, aij) pair, a reward, rij

• a discount factor gamma1

Terminal states can be modeled by restricting the action set for a terminal state to a single action 
that loops back into the terminal state and has a reward of 0. 

Given this setup, we could scale an abstract MDP model along each dimension and obtain the 
desired comparisons (policy iteration vs. value iteration vs. online learning algorithms) for entire 
universe of discrete MDPs. This would be an interesting exercise, but would certainly take more 
than 10 pages, and so I place the following three simplifying restrictions on the universe:

1. The environment is deterministic

2. All states have an equal number of actions; there are no terminal states

3. Gamma = 0.9 and there is a fixed integer number of reward, each unit of which is assigned 
uniformly to a state (with replacement). Rewards for each action, given the state, are equal.

With these restrictions, we could create an arbitrary number (many more than “two”) of random 
MDPs using just three variables: n_states, n_actions, and n_rewards. There is only one more thing
I dislike about this, which is that randomly generating the actions can result in an MDP that is just a
collection of several smaller disconnected state-action graphs. To get around this, I fix the first 
action in every state to return the next state (or, in the case of the final state, loop back to the start).
This guarantees that every state of the random MDP will be connected in one dimension. I call this 
a “Skip Ladder” environment, because we can view it as an infinitely repeated ladder (or loop) that
has skip connections (one skip connection leaving each additional action). 

An example Skip Ladder environment, with n_states = 4, n_actions = 2, and n_rewards = 1:

1 Gamma is often considered a part of the learning algorithm, but in my view this is incorrect, at least to the extent that
rewards are part of the environment (and not the agent): gamma is on equal footing as the rewards when 
determining utility, and should share whatever status rewards do. Since the formal treatment of rewards is as a part 
of the environment, so should the formal treatment of gamma (even though they are both agent-specific (cf. real 
humans experience different rewards and have different time values of rewards). Of course, we may find instances 
where learning is made easier by choosing a surrogate gamma that is different from the true gamma defined by the 
environment (e.g., in Open AI’s Lunar Lander environment, the true gamma = 1, but the most effective performance 
with a DQN agent is gamma = ~0.995). 
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A Interestingness and real world Skip Ladders
The experiments in this paper are primarily of interest to me in the abstract, because they reveal 
the impact of the key MDP characteristics on MDP learning algorithms. By capturing a range of 
MDPs on multiple dimensions, and introducing random generation, I am able to obtain results that 
are for more representative than those that experiments on any two specific MDPs would provide. 

As noted above, the Skip Ladder family of MDPs covers a large swath of all possible MDPs. It is no
surprise then that it can be related to numerous real world scenarios. Basically, any scenario where
there is a forward linear progression (e.g., driven by time, or 1-dimensional space), along with 
certain actions that can skip forward or backward, can be represented by a Skip Ladder MDP. For 
example:

• Mario games progress linearly, but have shortcuts that can be used to skip entire worlds

• One’s career typically progresses linearly, but certain key decisions can cause one to 
advance faster or perhaps reset

• Our daily lives can be seen as a linear loop, where certain actions throughout the day can 
be completed out-of-order --- we may occasionally pull an all-nighter: instead of going from 
the final state back to the beginning, we would skip to somewhere in the middle of the MDP

B Note re: similar states and hierarchical abstraction
A very important part of MDPs, as they apply to real life, and as reflected in the RL algorithms, is 
the idea of groups of similar states. E.g.: 

• hierarchical RL groups states/actions together into the higher order concept of “options”

• value iteration works by propagating the value of nearby (~similar) states

• optimal actions in the solutions to Grid World MDPs (or other MDPs with a spatial structure)
are typically point in the same direction as nearby states

The Skip Ladder environment captures this idea of similarity in the unidirectional linear progression
of states. In general, if state n has value V, then state (n-1) mod n is guaranteed to have value at 
least equal to gamma*V, because there is an action with reward at least 0 going from state (n-1) 
mod n to state n. This relation does not apply in the opposite direction.

C Skip Tree MDPs
Another interesting family of MDPs that I was unable to pursue for this assignment are Skip Tree 
MDPs, which are terminal MDPs with a tree-like progression, where the leaf nodes are terminal, 
and there are no backwards skips (and therefore no loops). Skip Trees would be a better 
representation of human life than Skip Ladders, since life is terminal, and has no do-overs. It would
be interesting to see if the general results found below apply to Skip Trees as well. 

2 Experimental Methodology

A Description of Experiments
I compared three reinforcement learning algorithms (value iteration, policy iteration, and Q-
learning) on a variety of Skip Ladders of different sizes. For each “play”, a Skip Ladder 
environment was randomly generated based on the three variables noted above: n_states, 
n_actions, and n_rewards. A play was defined as a single application of each of the three 
algorithms, each to convergence (as described for each algorithm below): thus, even though the 
environments were random, within each play, the algorithms were applied to the same environment
for comparability. 
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The purpose of the experiments was to determine how each of the three variables impacts the 
three algorithms. To test this, I tested each variable independently, by holding the other two fixed. 
As there may be interactions between the variables, I tested each variable in two different settings, 
one “small” and one “large”. The settings are summarized below:

Variable tested Tested range Small setting Large setting

n_states [10, 100, 1000, 10000*,
100000*, 1000000*]

n_actions = 2
n_rewards = 3

n_actions = 5
n_rewards = 50

n_actions [2 .. 6, 8* .. 10*] by 1 n_states = 50
n_rewards = 3

n_states = 500
n_rewards = 50

n_rewards [1 .. 101] by 10 n_states = 50
n_actions = 3

n_states = 500
n_actions = 5

*Q learning was not tested for settings marked with asterisk due to slow convergence speed

I believe the above ranges to cover a variety of “small” and “large” MDPs, as required by the 
assignment, along with everything in between.

Since MDPs were randomly generated, the results of a single play do not necessarily make for 
good comparisons, even if all algorithms are tested in the same MDP. Therefore, for each setting of
the variables I ran 30 different plays (30 different randomly generated Skip Ladders) and averaged 
the results. This should be more than sufficient to establish statistically significant comparisons 
(from experience), although I did not actually perform the pairwise t-tests (I am lazy, and that would
be beyond the scope of the assignment). 

In addition, I also tested different exploration schedules for Q-learning, and different policy 
valuation schedules for policy iteration.

B Description of Algorithms
Each algorithm works by using a version of the Bellman Q Operator:2

BQ((s, a) | α, γ, Q, R, PV) = (1-α)*Q(s, a) + α*(R(s, a) + γ * PV(s))

Where:

• s is a state, a is an action, α is the “learning rate”, γ is the discount factor, Q is a Value 
function of a state and action pair, R is a reward function of a state and action pair

• PV is a Policy-Value function of the state that implies a value based on some policy; the 
most commonly seen PV function is MaxQ, which takes the maximum Q value over all the 
actions for state s; MaxQ represents the greedy policy

Both value and policy iteration utilize policy valuation: given a known MDP, policy valuation, with 
respect to a policy pi, converges on the value function, V, that represents the expected discounted 
future rewards for policy pi. It does so by applying the following update to the value function, V 
(which can be initialized arbitrarily), until convergence:

for all states:
                 for all actions:

Q(s, a) ← BQ((s, a) | α=1, γ=0.9, Q=Q, R=ER[pi], PV=EV[pi])
     V(s) ← Q(s, pi(s))

where ER is the expected reward (we know it because we know the MDP model) under 
policy pi, and EV[pi](s) is the expectation of V(s’) under policy pi

Convergence within some epsilon of the true value is guaranteed by theory (as a result of the 
Bellman Q Operator being a contraction mapping).3 Based on a few preliminary experiments, I set 

2 This notation is based on Professor Littman’s notation in the RL course (8803-003), but I *think* some 
elements (i.e., PV) are my own to make it generalize to all algorithms. 
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“epsilon” equal to 1e-4 to provide a margin of safety over 1e-3, for which policy iteration and value 
iteration agreed on the optimal policy for all tested plays. 

Value iteration (VI) interchanges single iterations of policy valuation (i.e., a single value function 
update for each state) with greedy policy selection in a 1-to-1 ratio. Greedy policy selection 
accepts V and R functions, and returns the policy that maximizes expected value under the value 
functions. Converge for VI has the same criteria as for policy valuation, though the policy is 
changing at every iteration. I use epsilon = 1e-4. 

Policy iteration (PI) interchanges policy valuation iterations with greedy policy selection in an z-to-
1 ratio. A typical value of z might be 20 (this is what AIMA’s python repo uses), which I adopt. Since
convergence within a small epsilon (1e-4) (of the inner policy valuation loop) is often found early 
(i.e., within w << z iterations), my implementation stops early if such convergence is occurs. Below,
I run an experiment to show the effect of z. I consider that PI has converged when the policy has 
remained unchanged after z iterations of policy valuations.

Both VI and PI begin with an arbitrary initial value function / policy (usually the zero value function).

Both VI and PI use policy valuation, which requires a known model in order to compute ER and 
EV[pi]. In many cases, however, we will not have a known model. 

Q-learning overcomes this limitation by approximating ER and EV using a Monte Carlo 
approximation based on observations from interacting with the environment:

Until convergence (or satisfactory performance):
a ← action taken according to ExploreQ(Q, s) in current state, s
r, s’ ← observed result
Q(s, a) ← BQ((s, a) | α=α γ=0.9, Q=Q, R=I[r], PV=EQ[GreedyQ(Q, s’)])
s ← s’
α ← anneal(α)

Import differences to policy valuation based methods are as follows:

• We use the observed result, consisting of r and s’ to approximate ER and EV. 

• Whereas policy valuation uses the same policy to obtain a probability distribution over s’ 
and to compute V(s’) when computing the expectation EV, Q-learning uses ExploreQ(Q, s) 
to obtain an observation of s’, and GreedyQ(Q, s’) to create an expectation over the value 
of s’. This is known as off-policy learning: observations/actions are taken with respect to 
one policy, but expectations/learning are taken with respect to another policy. Off-policy 
learning allows us to learn the optimal policy while not actually following it. This is important
because exploration is necessary in order to prove that Q-learning converges in the limit.

• GreedyQ(Q, s) is simply greedy policy selection (as described above), but computed using 
Q instead of V. ExploreQ(Q, s) returns a policy that allows for exploration. The typical 
choice is an epsilon-greedy policy that returns a random action epsilon percent of the time 
(and otherwise chooses actions based on the greedy policy). We could also choose other 
exploration strategies such as softmax action selection. 

• Due to the Monte Carlo approximation of ER and EV,  we cannot (in general) simply use α 
= 1 as in policy valuation. Instead α must be satisfy certain conditions to guarantee 
convergence; namely, the sum of the infinite series of alphas must diverge, and the sum of 
the infinite series of squared alphas must converge. However, because Skip Ladder 
environments are deterministic, and the Monte Carlo approximation is exact, I was able to 
(and did) use α = 1. Note that this means the results for Q-learning may not generalize well 
to stochastic environments, as those will require alpha to be appropriately annealed. 

• Testing for convergence in Q-learning is a bit harder than testing for convergence in policy 
valuation methods. Technically, we could apply the same result as described above for 
policy valuation methods, but (1) we would never be 100% certain of convergence, 

3 Convergence is typically determined with respect to the largest state-wise difference in value: |V’(s) – 
V(s)| < epsilon for all s.
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because of the use of Monte Carlo approximation; instead we would need to use something
like the Hoeffding Inequality to create a confidence interval, (2) states in the MDP are not 
visited uniformly (as in policy valuation), and so we may require many cycles before the 
MDP finally convergences (e.g., if an important state is visited very rarely by the exploration
schedule, and our estimate for it is poor, Q-learning iterations are basically wasted until that
state is adequately explored; this does not happen with policy valuation methods). Skip 
Ladders, being deterministic, make convergence in Q-learning much simpler, since our 
Monte Carlo approximations are 100% accurate in a single observation. Thus, I was able to
use an epsilon-based method effectively (stop after update has been < epsilon in the last n 
plays). It is important to note, however, that the results for Q-learning may not generalize 
well to stochastic environments, due to convergence issues with Monte Carlo 
approximations. 

3 Experimental Results and Analysis

A Number of States

Variable tested Tested range Small setting Large setting

n_states [10, 100, 1000, 10000*, 
100000*, 1000000*]

n_actions = 2
n_rewards = 3

n_actions = 5
n_rewards = 50

Trends were consistent across both small and large configurations. The number of VI 
iterations decreased slightly when the number of states increased, but were more or less 
constant. However, the time started to become large as the state space entered the 
millions. As expected, the number of policy updates required for PI to converge was much 
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smaller than the number of value iterations for VI to converge, and was also relatively 
stable as the state space increased. However, the number of effective iterations (i.e., value
iterations in the inner loop) of PI grew approximately logarithmically with the state space. 
This growth is reflected in the convergence time graphs, where the convergence time for 
PI increases more rapidly than the convergence time for VI. Extrapolating, we can 
conclude that for large state spaces (100,000+ states), we should prefer VI to PI. 

Q-learning was tested with epsilon = 1 (i.e., 100% pure exploration). Lower values of 
epsilon (discussed in more detail below) sharply increase convergence time and number 
of iterations, and caused the experiments to run too slow. 

Note that the number of iterations for Q-learning is “effective”, which means that I divided 
the number of Bellman updates by the number of states, in order to make the number 
more comparable to VI and PI. It is still higher than VI and PI due to the stochastic 
exploration schedule. 

Q-learning performs poorly for two reasons. First, my implementations of VI and PI are 
100% vectorized in numpy and highly efficient. Q-learning is a sequential algorithm and 
cannot similarly be parallelized (unless we were to run multiple agents and allow them to 
share the Q-function). Second, Q-learning suffers from stochastic exploration: whereas VI 
and PI treat each state as equally, Q-learning does not (even when epsilon = 1, it will tend 
to stick to areas of the state space that have lots of state-action loops); since convergence 
was determined based on the maximum delta for all state values, this causes the converge
of Q-learning to take longer. Note that, as discussed above, this latter point is beneficial in 
more practical scenarios, since Q-learning will allow us to focus our attention on more 
relevant parts of the state space when all we seek is an approximately correct policy. 

In all “large” configurations, VI, PI and Q-learning converged to the same value function 
(and therefore policy) (within an error bound of 1e-3). The same was true for all “small” 
configurations, except that the final value function found by q_learning diverged from the 
true value function by a slightly larger amount in about 20% runs where n_states was 10. 
This was more or less the case for all experiments (i.e., my implementations are correct 
and my convergence criteria tight enough), and so I will omit this comment going forward. 

B Number of Actions (branching factor)
Increasing the number of actions per state had an approximately linear effect on the performance 
of all three algorithms for both small and large configurations. Once again, for the reasons 
discussed above, Q-learning performed the worst. VI performed slightly better than PI at all tested 
settings, with the gap between them growing larger as the number of actions increased. This 
suggests that the more actions an MDP has, the more we should prefer value iteration to policy 
iteration. Note that although the number of actions is very much the branching factor of the state 
tree, the repeated states that result from the Skip Ladder environment make this quite different 
from certain typical state trees, such as the game tree of a chess game --- thus it may not be 
appropriate to generalize this conclusion to such scenarios.

Variable tested Tested range Small setting Large setting

n_actions [2 .. 12] by 2 n_states = 50
n_rewards = 3

n_states = 500
n_rewards = 50
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(note that y-axis is on different scale from small config)

C Number of Rewards
As described above, each unit of reward was assigned to a random state based on a uniform 
distribution. Thus, increasing the rewards increases the expected reward per state and changes 
the distribution of rewards. Smaller number of rewards result in sparser rewards and more spiky 
distributions of rewards across the states. As the number of rewards increases, the distribution of 
rewards at a given state approaches a normal distribution with a mean equal to n_rewards / 
n_states (by the law of large numbers). 

Variable tested Tested range Small setting Large setting

n_rewards [1, 5, 25, 125, 625, 
3125, 15625]

n_states = 50
n_actions = 3

n_states = 500
n_actions = 5

7



(Q converges in approximately ~5 seconds)

The effect of number of rewards is similar to the effect of number of actions (but note that 
reward configurations were scaled exponentially --- so the results are substantively 
different). This result surprised me, as I was expected iterations and run time to remain 
consistent or perhaps even drop as the distribution of rewards became more even. Having 
seen the result, my explanation is that this occurs because I am using a tight convergence 
criterion rather than seeking an approximately correct policy. When rewards are closer 
together (more normal), it should be easier to find an approximately correct policy. But, 
given the surprise here, I am not confident making that generalization with an experiment 
(not performed).

D Intermediate Policy Iteration
As described above, the policy valuation phase of PI ran until convergence. But this is not 
necessary: convergence is guaranteed for any incomplete policy valuation. Therefore, one might 
ask whether an intermediate version of policy iteration would perform better.

I compared VI and PI for values of z in between 1 and 20 (inclusive) (recall that above, z was set to
20), on two different MDPs (results shown below). The trend is clear for both large and small 
MDPs: as we move from VI to PI by increasing z, our algorithm takes progressively more (inner 
loop / effective) iterations to converge, and progressively more time. Note that the convergence 
criterion for PI is a stable policy, which explains why for small values of z, PI converges in fewer 
iterations than VI (which uses an epsilon-based convergence criterion). Nevertheless, because 
tested for policy convergence requires actually comparing policies, this introduces enough 
overhead so that VI is more efficient than PI for all values of z: even when PI converges in fewer 
effective iterations. Further, it appears that the “policy convergence” criterion of PI is imperfect. 
Whereas PI generally converged to the same policy as as VI (VI representing the correct policy), 
for very small values of z (i.e., 1-5) on the small MDP only, PI occasionally (~20% of the time) did 
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not converge to the correct policy. This suggests that PI may benefit from a dual criterion: not only 
must the policy remain stable, but deltas during policy valuation must be epsilon-small.

Small (n_states=100, n_actions=2, n_rewards=3) Large (n_states=10000, n_actions=5, n_rewards=1000)

E Speed of Convergence
Often, and particular when MDPs get very large, we are more interested in an approximately 
correct answer than a correct answer. How fast do VI, PI and Q-learning approximate the answer? 

To test this, I once again use a small and large configuration, for which I compute the optimal value
function using VI to convergence. Then, I run each of the three algorithms and periodically 
evaluate the mean squared error between that algorithms current value function at every state and 
the optimal value function. Unlike the other experiments, I was unable to average the results over 
30 trials, due to the sporadic nature of PI’s effective iterations. I thus ran the experiment several 
times to confirm that different random MDPs obtain the same result (they do):

Small (n_states=50, n_actions=2, n_rewards=3) Large (n_states=1000, n_actions=5, n_rewards=1000)

What is interesting about these results is that the difference between Q and PI on the large
MDP is about the same as the difference between PI and VI --- so even though PI seems 
to perform far better than Q-learning when testing for convergence, it is does not perform 
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that much better for obtaining approximate policies. In fact, on the small MDP, Q-learning 
tends to outperform PI in the short run. 

F Exploration schedule
There was no requirement for real-time learning performance in the description (e.g., exploration 
vs exploitation trade-offs for purposes of obtaining rewards early on in learning), and so I took the 
liberty to focus this assignment on convergence. Exploration vs exploitation for purposes of early 
reaping of rewards is sufficiently explored in RL class, which I am taking concurrently, and it does 
not really make sense to compare to PI and VI, or in isolation for Q.

Exploration vs exploitation may still be relevant, however, insofar as it affects convergence. This 
can be the case if exploitation allows us to focus on more “interesting” parts of the state space, 
which is characteristic of an MDP that I observed in RL class.

Small (n_states=50, n_actions=2, n_rewards=3) Large_1 (n_states=1000, n_actions=5, n_rewards=1000)

Medium_1 (n_states=100, n_actions=5, n_rewards=1) Medium_2 (n_states=300, n_actions=10, n_rewards=1)

These results make it clear: for certain MDPs, exploitation can help convergence. Although most 
MDPs I tested were ordered by epsilon, in the bottom row you can find two MDPs were sub-1 
epsilons greatly increase convergence speed. Based on my experiments, and contrary to my 
hypothesis (which was that it would occur when rewards are dense), this occurs when rewards are 
sparse. Incidentally, the MDP on which I experienced this phenomenon in RL class was Lunar 
Lander, which, in retrospect, had an extremely sparse reward profile (so don’t ask me why my 
hypothesis was that dense rewards would cause this….). 

Quite surprisingly, these results suggest that for certain MDPs, if our objective is fast convergence 
to an optimal policy (rather than early exploitation for rewards---e.g., this might be the case when 
we are training the next Alpha-GO offline), we should experiment with an inversely decaying 
epsilon schedule!
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